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FOREWORD 

The domain of statistical physics has extended from the traditional 
problems in quantum mechanics, the solid states and the kinetic theory of 
gases to other nonlinear problems in hydrodynamics, plasmas and optical 
systems, for which we need to consider the fluctuation effects. Concep- 
tually, it has been found very helpful to view these statistical problems 
from a basic physical point of view which emphasizes their structural 
similarity. 

The study of stochastic systems has developed in two directions. First, 
the transition from a laminar state to a chaotic or turbulent state through a 
sequence of bifurcations shows a certain universality (see "Chaos and Univer- 
sality," Nordita Selection, 1981). 
state of fully developed chaos or strong turbulence, the statistical methods 
used for their theoretical analysis find again a certain universality. 
proper understanding of the many basic phenomena in astrophysics, space, 
atmospherical and optical applications depends critically on our ability to 
analyze the turbulent characteristics and the collective processes in these 
nonlinear systems. The lack of a suitable methods of treatment and the dif- 
ficulties encountered even for the simplest form of incompressible, homo- 
geneous and isotropic turbulence, have hindered the theoretical development 
of strong turbulence. 

Secondly, when the system has reached a 

A 

From the physical point of view, a turbulent state is characterized by 
its transport properties: eddy diffusivity, eddy viscosity, coefficient of 
damping, or amplification. Their analytical determination requires a trans- 
port theory. The kinetic method is best suited for this purpose. The eddy 
transport coefficients, as induced by the fluctuations of small scales, govern 
the evolution of larger scales. This requirement of scaling leads to the con- 
cept of renormalization groups, from which we develop the group-kinetic method 
of turbulence. We have applied the method to problems of atmospheric turbulence. 

The group-kinetic method combines the advantages of the kinetic method and 
the group-scaling. The kinetic description has the advantage of transforming 
the system of hydrodynamical equations that govern 
into a master equation of lesser nonlinearity. The group-scaling enables the 
determination of the transport properties and the spectral structure by the 
one-point distribution function alone, without involving the two-point distri- 
bution. 
not by truncation of the infinite hierarchy of n-point distribution functions or 
correlation functions. 

a nonlinear stochastic system 

Our closure is obtained by a memory loss in the relaxation process and 

The six verbatim sections include research accomplished during the second 
year, September 1, 1982 through August 31, 1983, of this two-year contractual 
effort. 
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SECTION 1 

General Considerations on the Group-Kinetic Theory of Turbulence 

I. PRXNCIPLE OF THE GROUP-KINETIC THEORY 

The Navier-Stokes equat ion o f  mot ion w i t h  ex te rna l  

f o rces  i s  t ransformed i n t o  a master equat ion 

and se l f- cons i s ten t  

f i  
f o r  t h e  d i s t r i b u t i o n  f u n c t i o n  f(t,x,v) o f  v e l o c i t y  v , w i t h  t h e  equivalence 

r e l a t i o n  

u u  * 

A 
f(t,x,v) =p 5 - u(t,x)-) , 

\ - - -  
).u 

t h a t  i s  v a l i d  f o r  a constant  o r  v a r i a b l e  dens i t y  p, and f o r  a f l u c t u a t i n g  

f l u i d  v e l o c i t y  $(t,x). Here L i s  t h e  d i f f e r e n t i a l  opera tor  f o r  t h e  p e r t u r b a t i o n  

of t h e  t r a j e c t o r y  i n  t h e  phase space. 

0 

- w  

The t o t a l  d i s t r i b u t i o n  f u n c t i o n  

Iv 

cons i s t s  o f  a mean d i s t r i b u t i o n  ? =  (?}  and a f l u c t u a t i o n  f . The usua l  

Fou r ie r  decomposit ion of a f l u c t u a t i n g  f u n c t i o n  conta ins t o o  many minute de ta i l s ,  

and a coarse- graining procedure i s  necessary. I n  analogy w i t h  t h e  " renormal iza t ion  
Y r- 

groups", we decompose f 

o f  decreasing coherence, 

i n t o  groups 

f '  , f" 

rep resen ta t i ve  o f  t h e  s p e c t r a l  evolut ion,  eddy d i f f u s i v i t y ,  

and re laxat ion,  respect ive ly .  By fo rmu la t i ng  t h e  r e l a x a t i o n  as a f u n c t i o n a l  o f  

t h e  d i f f u s i v i t y ,  we o b t a i n  a closure. 

The group- scal ing has t h e  advantage o f  determining t h e  spectrum from t h e  

I 
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s i n g l e t  d i s t r i b u t i o n  func t i on  alone, w i thout  i n v o l v i n g  t h e  2- point d i s t r i b u t i o n  

f u n c t i o n  as i s  requ i red  i n  t h e  convent iona l  methods o f  s t a t i s t i c a l  mechanics. 

The k i n e t i c  equat ion i s  de r i ved  f o r  fo . I t  takes t h e  general ized form 

o f  t h e  'Fokker-Planck equation, w i t h  t h e  d i f f u s i v i t y  D ' ( }  as an i n t e g r a l  

opera tor  t o  represent  t h e  memory and t h e  c o l l e c t i v e  behavior. I t i s  converted 

i n t o  t h e  hydrodynamic equat ion i n  t h e  group form, from which we determine t h e  

eddy v i s c o s i t y  

2 

K' F(k), parameters ] 
c * 

and c a l c u l a t e  t h e  s p e c t r a l  f u n c t i o n  F(k). The parameters i nc lude  t h e  C o r i o l i s  

f i e l d  and the  length  o f  s t a b i l i t y  from shear and buoyancy. 

11. SPECTRAL DISTRIBUTION OF TURBULENCE 

A. The a p p l i c a t i o n  o f  t h e  group- kinet ic  method t o  t h e  Navier-Stokes 

equat ion o f  mot ion f i n d s  t h e  d i r e c t  and reverse cascades f o r  t h e  t r a n s f e r  across 

a spectrum, and de r i ves  t h e  s p e c t r a l  d i s t r i b u t i o n s  i n  i n e r t i a  (k'5'31, shear 

(k-'), and geostrophic tu rbu lence (k'3 and k 3 .  I n  boundary l aye r  turbulence, 

t h e  spect ra  o f  v e l o c i t y  f l u c t u a t i o n s  i n  separate d i r e c t i o n s  

and a s p e c t r a l  gap i n  t h e  s t a b l e  boundary l aye r  i s  expected. 

-4 

can be treated, 

B. The extensions t o  t h e  Zakharov equations, t he  non l i nea r  Schradinger 

equat ion  and t h e  Korteweg-deVries equat ion a re  important  f o r  analyz ing t h e  new 

dynamical c h a r a c t e r i s t i c s  and t r a n s p o r t  p r o p e r t i e s  o f  s o l i t o n  turbulence i n  f lu ids ,  

plasmas and s o l i d ,  and the self- focusing i n  op t i ca l  turbulence. 

111. NUMERICAL MODELING 

- 
The k i n e t i c  equat ion f o r  f and i t s  conversion i n t o  f l u i d  representa t ion  

forms t h e  bas i s  f o r  t h e  modeling and p r e d i c t i o n  o f  t u r b u l e n t  p r o f i l e s  and 
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spectra i n  t h e  t u r b u l e n t  boundary layer. Here t h e  t ranspo r t  c o e f f i c i e n t s  become 

e x p l i c i t  f unc t i ons  o f  t, x 

laws are a n a l y t i c a l l y  determined by our group- kinet ic  theory. The pressure- 

v e l o c i f y  c o r r e l a t i o n  i s  a l s o  a n a l y t i c a l l y  derived. 

and t h e  governing parameters, once t h e  s p e c t r a l  - 

Our f i r s t  aim in  t h e  modeling o f  tu rbu lence i s  t o  p rov ide  an a n a l y t i c a l  

b a s i s  f o r  t h e  Monin-Obukhoff s i m i l a r i t y  by determining t h e  s t r u c t u r e  o f  t he  

u n i v e r s a l  func t ions .  Then, we can dev ise  a pew numer ical  modeLing which w i l l  

i ncorpora tes  t h e  e f f e c t s  o f  scales, t h e  c o l l e c t i v e  behavior  and the  memory. 

IV .  ATMOSPHERIC BOUNDARY LAYER 

We can d i v i d e  the  t u r b u l e n t  atmospheric boundary l aye r  i n to :  

A. The lower boundary layer, o r  sur face l aye r  

B. The upper boundary l aye r  which i nc ludes  t h e  free- convection layer, 

t h e  mixed layer, and the  Ekman layer .  

The 

and i s  charac ter ized by t h e  constant  f l u x e s  o f  momentum, temperature and 

surface l aye r  extends from t h e  ground up t o  a he igh t  o f  l ess  than io0 meters, 

humidity. The main tasks  a re  t h e  p r e d i c t i o n  o f  p r o f i l e s  and spectra by  a n a l y t i c a l l y  

determining t h e  u n i v e r s a l  func t ions  that could not be determined by the empirical 

similarity theory of Monin and Obukhoff. 

The upper l aye r  conta ins  t h e  a d d i t i o n a l  e f f e c t  o f  t h e  C o r i o l i s  force, 

which en te rs  i n t o  the  d i f f e r e n t i a l  opera tor  i n  p e r t u r b i n g  t h e  t r a j e c t o r y .  

The above d i v i s i o n  o f  t h e  atmospheric turbulence i n t o  two parts, as 

dependent on t h e  absence qr presence of t h e  C o r i o l i s  f i e l d ,  i s  analogous t o  

t h e  c l a s s i f i c a t i o n  o f  plasma turbu lence i n t o  two pa r t s :  t h e  Langmuir 

turbulence (i.e. w i thout  magnetic f i e l d )  and t h e  magnetized plasma turbulence. 

J 



SECTION 2 

Group-Kinetic Theory of Two-Dimensional Geostrophic Turbulence 

C. M. Tchen 
The City College and The Graduate Center 

of The City University of New York, N. U. 10031 

ABSTRACT 

The two-dimensional geostrophic turbulence driven by a random 
force is investigated. On the basis of the Liouville equation which 
simulates the primitive hydrodynamical equations, we develop a group- 
kinetic theory of turbulence and derive the kinetic equation of the 
scaled singlet distribution. This distribution will suffice for the 
investigation of the spectrum of turbulence, without having to resort 
to the pair-distribution as was with the usual kinetic theories. The 
collision integral has a memory and describes the pair interaction and 
its enhancement by the multiple interaction. 

Our kinetic equation of turbulence is transformed into an 
equation of spectral balance in the equilibrium and non-equilibrium 
states, as governed by the direct cascade and the reverse cascade, 
respectively. The sequence of power laws 
are derived. 

k-3, k-4 of velocity fluctuations 

2- 1 
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I. INTRODUCTION 

The two-dimensional geostrophic turbulence has attracted much attention 
[Fjdrtoft, 1953; Charney, 1971; Rhines, 1979 . Theories based upon the 
diffusion approximation [ Leith, 1968 1 ,  the spectral properties [Novikov 
1979 1, the direct interaction approximation [ Kraichnan, 1967, 1971a,b ; 
Pouquet et al., 1975; Salmon et al., 1978 1 , and numerical modeling and 
simulations [ Lilly, 1969a,b, Basdevant et al., 19783 have found a spectral 

driven by a random force [Saffman, 1971; Thompson, 19731 . Deviations from 
these laws have also been discussed [ Gage, 1979 1. The sequence of appearance 
of the spectra k-3 , 
cascade were analytically vague 
theory of the geostrophic turbulence driven by a random force. 

9 

k-3 . This spectrum changes into k-4 if the geostrophic turbulence is 

k”4 , and the dynamics of the direct and reverse 
in the lack of a generalized statistical 

Our investigation is divided into two parts. The first part develops a 
group-kinetic theory on the basis of our earlier scaling procedure 
1979 1 , and derives the kinetic equation of turbulence. Usually the analysis 
of the spectral structure requires either a pair-distribution function or a 
detailed Fourier decomposition. These are not needed here, because of the 
scaling procedure mentioned. Our kinetic approach has the advantage of not 
only including the random force in our homogeneous Liouville equation, but also 
of describing the interaction between the wave and the fluid particle, as 
characteristical of the large scale turbulence. The collective collision 
obtained will include the memory, the pair-collision and the multiple 
collision [Tchen and Misguich,l982] . The latter effect is essential and 
will be applied to the treatment of the reverse cascade that is often found 
with the large scale turbulence. 

Tchen, 1978, c 

With the kinetic foundation described above, the kinetic equation of 
turbulence is transformed into its hydrodynamical form, and is used to 
develop the spectral theory of geostrophic turbulence in the second part o f  

this paper. The two parts are separately self-consistent and can be read 
independently. 
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11. MICRODYNAMICAL STATE OF TURBULENCE 

The Navier-Stokes equation of motion 

of an incompressible f l u i d  s a t i s f i e s  the  condit ion 

0.; = 0 0 -.., 

By taking the  c u r l ,  w e  obta in  the  v o r t i c i t y  

h p = V%Lc 
+ L  * 

and transform (1) i n t o  the following v o r t i c i t y  equation of the two-dimensional 

geostrophic turbulencer 

Here w e  have 

The f i e l d  
/* a 4 

E - = c Ep + ,“x 
has two components. The component 

which is the  gradient  of pressure $ a t  a constant  densi ty  f‘ 

present  in the  v o r t i c i t y  equation (3) , because 

, is not  
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I\ 4 

forms a f i n i t e  v o r t i c i t y  source VxE . .!X .v. c x  
The other  component 

The equations (l), (2) and (4) describe the  microdynamical state of 

turbulence, and are used as the  point  of departure of our statistical 

treatment. I n  our t ranspor t  theory by eddies l a r g e r  than the viscous cutoff ,  

the e f f e c t  of the  kinematic v i scos i ty  w i l l  be neglected, but  w i l l  be 

r e s t i t u t e d  i n  the  spectral balance where the  v i scos i ty  gives a molecular 

d iss ipat ion.  

For t h e  development of a k i n e t i c  method, w e  write the  microkinetic 

equation i n  the form of the Liouvi l le  equation: 

[ A t  +h] l(t,X,V) -II. - 0, 

with the  d i f f e r e n t i a l  operator 

A 
The de ta i l ed  d i s t r i b u t i o n  function f is normalized t o  uni ty ,  as 

h 

dv f ( t ,x ,v )  = 1, 

and assumes the  form 

i n  order t o  be 

equation of continuity (2). It is not d i f f i c u l t  t o  show by taking t h e  f i r s t  

two moments, t h a t  
equations (1) and (2). The Liouvi l le  equation is  homogeneous and has less 
nonlinear terms than does the  Navier-Stokes equation, because the  function 

u( t ,x)  of veloci ty  of f l u i d  is replaced by an independent va r iab le  v . 
W e  r e t a i n  the only nonlinear t e r m  E *&f i n  order t o  describe the  

mode-couplings. 

consis tent  with the  Navier-Stokes equation (1) and the  

the  Liouvi l le  equation w i l l  reproduce the two hydrodynamical 

r 
*. 

4 A  
v - r  

-I 

J 
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111. GROUP-SCALING PROCEDURE 

The Liouvi l le  equation (9) contains too many minute d e t a i l s  which are 
unncessary for a statistical treatment of turbulence. W e  apply a sca l ing  

procedure by dividing the  de t a i l ed  d i s t r i b u t i o n  

h f = r + F  (13) 

0u 

i n t o  a mean d i s t r i b u t i o n  2 and a f luc tua t ion  f , and t h e  f luc tua t ion  

(14) 
tu 
f = f O +  f '  

- 
i n t o  a macro-group f o  and a micro-group f '  . The funct ion f ( t ,x ,v)  

gives t h e  d i s t r i bu t ion  of ve loc i ty  i n  non-equilibrium. The macro-group fo  

ca lcula tes  the  spectrum of turbulence'without t he  need of developing a 
separate  k i n e t i c  equation of the  pa i r- dis t r ibut ion  funct ion ( E  f )  . I n  t he  

following, we develop a k i n e t i c  equation of t he  macro-group 

inves t iga te  t he  spectrum of turbulence. 

- 1  

N N  

f o  and 

The evolution of t he  macro-group is  control led by t h e  t ranspor t  

property as shaped by t h e  f luc tua t ions  of t he  micro-group, while t he  

approach of t he  t ranspor t  property t o  equilibrium is obtained by t h e  

relaxat ion.  These three  t ransport  processes of evolution, t ranspor t  

property and re laxa t ion  are represented by the  three  groups 

fO, f '  , f" 

of the  d i s t r i b u t i o n  funct ion,  o r  by t h e  th ree  groups 

Eo, E' , E" 
v u - 

of t he  f i e l d .  The in t e rac t ions  between the  groups are described by a 
coupled system of equations. 

The groups have t h e i r  time scales character ized by the  cor re la t ion  

times 

x 
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For formulating the transport coefficients, the correlations, as given by 
the groups E'(t-t ), are integrated with respect to 77 and 
7; ' in the domains (0, t) , (0,t ), respectively, so that the evolution 

c'(7:- T'), 
.y 

times t 

following manner : 
,f, F 'can be ranged among the correlation times (15a) , in the 

The degradation of coherence (15) will constitute a property of 
quasi-stationarity of one group with respect to the other. 

The individual fluctuating groups 

0 u 9 u' y u" 
Y ). * 

can be decomposed into Fourier components with overlapping wavenumbers. But the 
global averages e. g , 

are deterministic, and are separated by their adjacent wavenumber domains 

with k, k' varying from 0 to 60 . 
For the sake of convenience, we introduce the scaling operators - 

A , A" , A' A" (174 
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I V .  SCALING OF THE LIOWILLE EQUA'XONS 

By applying the  operators  A" and A' t o  scale t h e  Liouvi l le  equation 

(9), we obta in  the  system of coupled equations: 

(b $)f' = - L'fo - c, . 
The second equation of the  system may be equivalent ly replaced by 

(1, + A'Z)f' = - L'fo . 
Upon in tegra t ing  (19) and (20), w e  have 

t 
f f  = - A'[ d tG( t , t -C)  L'(t--G) fo( t - t )  

J O  
t 

- A'/ d'l; $(t,t-T) Co(t--C'), 

0 

and 

d t i ( t , t - T )  L' (t-T) { (t-T) 
f '  = - A ' i t  0 

A A 
Here 

operators  L and A'L, respect ively.  The i n i t i a l  v a l u e  f '  (0) has been 

neglected, s ince  i t  cannot produce a f i n i t e  co r r e l a t ion  

a t  l a r g e  t , by (15). 

U andA are evolution operators  as r e l a t ed  t o  the  d i f f e r e n t i a l  
f i  h 

AOL' ( t ) f  '(0) 

Subsequently, we  prernultiply (21) and (22) by -AoL' t o  f ind  t h e  

c o l l i s i o n  i n  t he  following two forms: 

C 0  = Eo + A o k :  L ' ( t )  U'(t,t-T.) C o ( t - t )  

p co - Ao Ho* Go , with H's -AoL1( t )U ' ( t , t - t )  
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co = A' A'[fo(t-T)) . 
The collective collision Co 
collision 

is seen to consist of two parts: The pair 

co= Aod'ffo(t-r)) , (25) 

f l  
from the correlation between two micro-fields 
t o  4' The multiple collision, from the correlation AoL'U'Co between 
a micro-field and the cluster of the organized micro-fluctuations, is 
proportional to LQ . 

AOL'A'UL' , is propcrtional 

/ 2  

The governing collision operators 

t 
A'&' = AoJodC L' (t) A' ;( t, t-T) L ' ( t-t) 

are defined by the diffusivities 

n 
A'@' = A" Jo:, E'(t)A'U(t,t-C .ry )E'(t-t u ) 

..L 
-a 

AoD' = A" /:T E'(t)A'A (t,t-T)E'(t-C r* ) 
.* u 
n 0 

which themselves may serve as operators. In (23) we have replaced 

AoL'(t)A'j(t,t-t)Co(t-T; ) by AoL'(t)U'(t,t-T)Co(t-C) 

without loss of generality. 

x 
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4 
The operator U ( t , t - z ) ,  with t' = t-75 is  governed by the  Liouvi l le  

equations : 

4 A 

The operator A is re l a t ed  t o  U and the  r e l a t i o n  has been developed 

by Weinstock [ i g w ]  . 
By sca l ing  (28a) by means of A" we obta in  t h e  k i n e t i c  equation 

with the  co l l i s ions  

as r e l a t ed  by 

Ho yo- A" Hog Ho , 
i n  analogy with (23) - (25). 
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V. PROPAGATOR AND PROBABILITY OF RETROGRADE TRANSITION 

n 4 

The Liouville equations ( 9 )  and (28) which govern f and U have 
h the same differential operator L , and therefore the same characteristic 

equations governing the dynamical variables in the form 

or equivalently, 

with the conditions 
A 

(314 x(t) = x, G(t) = v, - . L e  rc 

by the nature of the differential equation of the second degree, where 

the "initial conditions" in the retrograde transition from t to tt . 
By a change of variables 

5 and ,v are two independent variables. The values (31c) will be called 

h 

6 n 
(324 x(t-t) = x - R(r)  , v(t-t) = v - V ( t ) ,  T=t-t', 

..r * . c  h " - -  

we can write the characteristic equations in the integral form 

1c 

Jo 
.m 

- 0  

Note that ;(t-T) from (32a) can be rewritten as 
* 
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o r  as 

i n  the  Lagrangian representat ion,  with 

fo r  the sake of brevi ty ,  The vertical b a r  i n  

Lagrangian displacement x(t)  w a s  made during a time in t e rva l  T: along 

the t r a j ec to ry  t h a t  passes by the  po in t  x, a t  the time ins t an t  t. 

The systems (31) and (32) are ca l l ed  the  equations of the path 

dynamics i n  the d i f f e r e n t i a l  form and the i n t eg ra l  form, respect ively.  

Both forms equally descr ibe the t r a j ec to ry  of 

occupies the  pos i t ion  x(t ')  a t  the t i m e  i n s t an t  t '  , provided 

the t r a j ec to ry  passes by the  point  x a t  the  i n s t an t  t while having 

a ve loc i ty  v . 

[ denotes t h a t  the 
A t,z 

IM 

a f l u i d  p a r t i c l e  which 
A - 

... 
r) 

It is t o  be s t i pu l a t ed  t h a t  t h e  e s s e n t i a l  function of the  propagator 
A A 
U is t o  impose a Lagrangian representat ion o f  t he  function, say E as 
i n  (27a), i n  the  form 

A 4 
E [t', G ( t q ) )  I U ( t , t ' ) $ ( t l ) ,  .y 

w - 
following the  t r a j ec to ry  that is determined by the d i f f e r e n t i a l  

dynamics (31). 

Alternat ively,  with the  path dynamics (32) , the  Lagrangian 

representat ion can be obtained i n  the i n t e g r a l  form 

by using the  probabi l i ty  dens i ty  

The i n t e g r a l  r e l a t i o n  is wr i t t en  f o r  the  purpose of transforming the 

Lagrangian function i n t o  the Eulerian function. 

n 
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The probabi l i ty  dens i ty  satisfies the  condit ion of normalization 

The densi ty (34a) defines t he  probabi l i ty  

f o r  t h e  f l u i d  p a r t i c l e  t o  occupies a pos i t ion  between 

a t  the  t i m e  i n s t an t  t-73 , provided i t  follows the  t r a j ec to ry  which 

passes by the point x, a t  t h e  t i m e  t. For t h e  retrograde t r a n s i t i o n  t o  be 

spec i f ied  by the  i n t e g r a l  path dynamics of f(r), as given by (32), we  
6 .  

write [Tchen, 19441 

A p(t-Z, x-R 1 t , X )  = Sfi-i+t-T, 1 t,X)l, 

o r  b r i e f l y  

The abbreviated form indica tes  a quas i- s ta t ionar i ty  of $ 
space, so t h a t  the  Liouvi l le  equation can be wr i t t en  i n  t h e  form: 

i n  t he  t ,x  ... 

with t h e  d i f f e r e n t i a l  operator 

It is not  d i f f i c u l t  t o  show by moments t h a t  (37a), together with (36), 

w i l l  reproduce the  i n t e g r a l  path dynamics with t h e  i n i t i a l  ve loc i ty  

de f in i t i on  (12), v can be iden t i f i ed  as *u(t,x) i n  the  r e tu rn  t o  t he  

A 
t h a t  is a random var iab le  having a d i s t r i b u t i o n  f(t ,x,v) . By z .-- 

n . -  Y 

x 
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micro-hydrodynamical descr ipt ion.  Thus the Lagrangian representat ion (33a) 

by means of the  propagator is s t r a i g h t  forwardly k ine t ic .  On the  

other  hand, the Lagrangian representat ion (33b) by means of the probabi l i ty  

p ( b , g )  is  va l id  i n  both the  f l u i d  and k i n e t i c  descr ipt ions.  I n  t he  fo  

the  i n i t i a l  ve loc i ty  is 

dissociated from the d i s t r i bu t ion  f (t ,x,v) I n  the  latter,  although the  

i n i t i a l  ve loc i ty  

probabi l i ty  densi ty  "p<t ,& ) , it  is imp l i c i t  i n  the  path dynamics through 

the d i s t r i bu t ion  ?( t ,x ,v) ,  so t h a t  t he  same Liouvi l le  equation can be 

copsidered as an equation of a k ine t i c  s ignif icance i n  the  contracted 

dimensionality, i.e. i n  the  sense t h a t  the  governing path dynamics requires  

an i n i t i a l  ve loc i ty  t o  be determined k ine t i ca l l y .  The contracted dimensionality 

gives t o  the  Liouvi l le  equation a simpler d i f f e r e n t i a l  operator t ha t  is 
independent of 4 and therefore  a s impler  Fourier transformation. 

f i  

U ( t , t ' )  

A 

A u 

u( t ,x ) ,  and the Liouvi l le  equation (37a) becomes 
f i  - *  

c ,- 

v is not d i r e c t l y  involved as a va r i ab l e  i n  t he  * 

u 

"n. 

- 

In  the  following, we  s h a l l  exp lo i t  t h i s  advantage of the contracted 

dimensionality by using the probabi l i ty  of t r ans i t i on  i n  t ransfoming  a 
Lagrangian function, e.g. (33a), i n t o  an Eulerian function, e.g. (33b). 
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VI. MEMORY IN THE COLLECTIVE COLLISION 

The problem of the derivation of the collective collision Co in 
terms of the pair collision c" involves the solution of the coupled 
integral equations (23) and (30), and the treatment of the Lagrangian 
functions associated with the propagator and its collision, from (29) 
and (30b) The problem is complicated. We shall make the simplification 
by separating the chain of correlations (15b) into two sections 

and 
7: 7 q > T'. 

referring to the processes of transport coefficient, i.e. diffusivity, 
and relaxation, i.e. propagator, respectively. The first section which 
has a correlation of long duration shall preserve its memory, while the 
correlation of the second section which has a short duration should not 
propagates its memory beyond the time spanz and exert an effect on the 
evolution of fo(t,x,v) , 

...u 

With this memory-loss we simplify the equations o f  collisions (23) 
and (30b) into the system of equations 

which we can combine into 

C0 

It leaves the Lagrangian-Eulerian transformation by the method of the 
transition probability, as follows: 

(40) 
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We see the transformation 

from (33b), i n  which the k ine t i cs  of 

by the  dynamics of 
as governed by (29)  is replaced 

as governed by (37a). Note t h a t  

are i n  the  t ,x ,v  space. On the  other  hand, i n  the  T ,a space, p(c,g ) 
does not  carry  v , except i n  the  path dynamics as an i n i t i a l  condition. 

U ..." .c 

Y 

Further s impl i f ica t ion is obtained by a Fourier transformation of 

( 4 1 )  i n t o  
- 
H + Co= (A'} (2?c)-$ p(w,k) Co(4k)  v u  = -%(d,k) * Co(cJ,k), b o  ( 4 2 4  

w 

with 

(3,k) = - (, A)7C ' lm d t e  i(d-k.v)t- - - P e r k )  (42b) 
* 

i n  d-dimensions, so t h a t  the i n t e g r a l  equation ( 4 0 )  is transformed i n t o  the 

form 

or,  by co l l ec t ing  Co, 

with 

- 
The probabil i ty funct ion '  

d i f f e r e n t i a l  equation of evolution: 

P( t , j  ) is determined by the  following 
I 

t h a t  is scaled from the  Liouvi l le  equation 

( 4 3 )  

( 4 4 )  
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with a fluctuating differential operator. We find the solution: 
1 

From the path dynamics (32), we find 

and that (@'(t)) 
evolution of F(r,l) from (451, 

Now we can calculate 6 from (42b), by substituting for 5 from (47). 
We find that 

is asymptotic and (m"0) is not asymptotic in the 
.I 

with 

is controlled by the memory-loss function 

which determines the life-time of memory in the form 

The characteristic frequencies are 

and the numerical coefficients are 

c =T/c' , &=(1/3)~'~ , co =(1/8)~/~ 
o( 

51a 

a 
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As seen from (43) and (44), the  co l l ec t i ve  c o l l i s i o n  Co is 

, which can be r r e l a t ed  t o  the p a i r  c o l l i s i o n  c" by a f ac to r  

as 
mit ten  

i n  terms of the real and imaginary p a r t s  of & 
determination of (51) rests on the  ca lcu la t ion  of the  memory in t eg ra l  

(50a) and i t s  decomposition i n t o  i ts  real and imaginary pa r t s .  The 
ca lcu la t ion  is made by an in te rpola t ion  over the th ree  regions dominated 

bYLt 

, by (49). Hence the  

and mo , separately.  The r e s u l t s  are given as follows: 

(a) For weak turbulence, i.e. 8 C.$: hb , w e  f i nd  a shielding 

i n  the  co l l i s i on  by a f ac to r  

0 
(b) For s t rong turbulence, i.e. 

enhancement i n  the c o l l i s i o n  by a f ac to r  

%: ry , we f ind  an 

(3 ?: 12.51, i f  no<< $' 
11 f 2.77 ($/m0)32 1, i f  mo >)a' 

3p 

We can approximate p by its constant asymptotic values which are : 

(a) weak turbulence , 

@ I ,  
0 

(b) s t rong turbulence, /2 < "Jp', I* 

1, f o r  &!'<$,' ( la rge  k) 

2.51, for$'&'(small k) . b 

( 5 4 4  
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It entails the simplification 

of (43 . ) .  

VII. SPECTRAL BALANCE 

The kinetic eqution (18) of fo , rewritten as 

(bt + AoL)fo = - Lo? f Co (56) 

has a collective collision which can be written as 

with a diffusivity found by (55b). - 
Consider now a homogeneous turbulence, i.e. with = 0, E = 0. 

.* * 
By taking the first moment of the kinetic equation (56), we obtain the 
following equation of macro-momentum: 

with a collision 

by (57). Subsequently,-we take the curl of (58) and (59), to obtain the 
following equation of macro-vorticity of the two-dimensional geostrophic 
turbulence: 

Finally, 
spectral 

upon multiplying (60) by go and averaging, we find the equation of 
balance in the form: .rr 
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with t h e  following t ranspor t  functions: 

cascade t ranf  er T" = ($9 V X Q " )  ( 6 2 4  

molecular d i s s ipa t ion  E a t A!(PT")z) (62b) 

r* - A .  3; 

5 ..L 

Note t h a t  t h e  f i e l d  
0 E," = _EpO +,Ex 

cons is t s  of two par t s :  The f i r s t  p a r t  has a zero v o r t i c i t y  by (a), and 

the  second pa r t ,  which is  a random source, does no t  co r r e l a t e  with 5 . 
Thus the  f i e l d  bo 
the  co r re l a t ion  (P-E") . But it governs the  c o l l i s i o n  

0 

does not  appear i n  t he  spectral balance i n  t he  form of 
0 

* - -  

c r 

with 

through t h e  d i f f u s i v i t i e s  

aD'> =(E)?/) .P (y> ( 6 3 4  

<Di)= rdT(Epl (t,xM%, t - t )Ep l  *cI (t4@$xp(Ex1 (t,x)&, t-C)EX' 4 b  (t-T) .(63d) 

By separat ing t h e  c o l l i s i o n  i n t o  two pa r t s  as i n  (63a), we f ind  t h e  

t r ans fe r  funct ion a l s o  separated i n t o  two par t s ,  as follows: 

x z % 

> with do to 

0 -  * 
.1 

( 6 4 4  

(64b) 

0 To = Tpo + Tx 

Tp 0 =(ro* vx Qpo) , TX = ( C o e Y ~ Q i >  .. 
, r with 

* * d  -I.l.*. 

I n  t h e  following, w e  shall follow the  same method of treatment of 
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the  t r ans fe r  function as developed earlier 

w e  introduce the  spec t ra l  functions Fu(k) 
density (sx'(k)) , such t h a t  

by Tchen [1981] . As nota t ions  

and F (k) , and the s p e c t r a l  
5 

and the second spectral moments 

2 k 
R = 2 dk' k t 2  F (k ' ) ,  Ru = 2 I k d k '  k' FU(k'),  

r 0 r 0 

with the re la t ionship  

by d e f i n i t i o n  (3) i n  d=2 dimensions. By omitting t h e  d e t a i l s  of ca lcula t ion,  

we f ind  the r e s u l t s  as follows: 

(a) Cascade-transfer by the  Ep - f luc tua t ions  

The t rans fe r  function is obt2ined i n  the  form: 

The coef f i c ien t  /3 represents the  e f f e c t  of the  m u l t i p l e  c o l l i s i o n  (54). 
The t rans fe r  function is  seen t o  be governed by the  eddy v i scos i ty  

which has an asymptotic value 

-00 

;b 
f o r  l a r g e  k , and by the  rate of damping 
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with a3 

(6 ') ( K ' )  = [ _" h d 
Fu(k") ] 

k 
U 

f o r  small k . Note t h a t  (69a) is t h e  so lu t ion  of 

Q) 

The asymptotic formulas 

theory [Tchen, 1973, 19781 

(67) and (69a) agree with our earlier cascade 

and o ther  dimensional theor ies  

p i s e n b e r g ,  1948; G i s i n a ,  19693 . 
(b) Cascade-transfer by EX - f luc tua t ions  

h 

The t r ans fe r  funct ion is obtained i n  t he  form 

= /(Ki)R; , f o r  l a rge  k 

TX I 1/3 ~.'(q*~, f o r  small k , 

and is governed by the  eddy v i scos i ty  

f o r  l a rge  lc, and the  rate coe f f i c i en t  of damping 

f o r  small k . Here t h e  modulation funct ion 

is character ized by t h e  two frequencies as fqllows: 
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It is t o  be noted t h a t  t he  s implif ied formulas of a l l  t he  t r ans fe r  

funct ions l i s t e d  above are cha rac t e r i s t i ca l ly  i n  t h e  form of products of 

two functions. A general formula not  i n  t he  form of a product has a l s o  

been developed by Tchen (1981b), but  is too complicated f o r  t he  appl ica t ion  

t o  the  present  problem. 

W e  f i r s t  consider the  port ion of t he  spectrum of l a rge  k . The small 

eddies are embedded i n  a gradient  of b ig  eddies and i n  t h e i r  coupling with 

the  bigger eddies,  the  small ones play the  r o l e  of an eddy v iscos i ty ,  

t o  cause a l o s s  of t he  bigger ones a t  the  rate >t(p"t)< 0 . This t r ans fe r  

is i n  t he  pa t t e rn  of a cascade from the  big eddies t o  the  smaller ones. 

It is of t he  gradient  type and is ca l led  the  d i r e c t  cascade. Now we  

consider the  port ion of the  spectrum of small 
no more gradient  l e f t  i n  the medium i n  which they evolue, i f  t h e  turbulent  

medium is i so t ropic .  The coupling between the b ig  and small eddies i s  

not  through t h e  gradient  t r ans fe r ,  but  i s  of the  type of the damping. The 

rate coe f f i c i en t s  a:, fl.' are or ig ina ted  from the  wave-particle in te rac t ion  

[Tchen, 19811 , and may become negative when k is su f f i c i en t ly  small. 
Then they give an amplification. When t h i s  happens, thb t r ans fe r  funct ions 

reverse t h e i r  r o l e s  from a l o s s  i n t o  a production, i.e. 2t(<2> > 0 

Such a t r ans fe r  mechanism is  ca l l ed  the  reverse cascade . An analogous 

phenomenon is known i n  plasmas as the  Landau damping o r  amplification. 

k . There the  big eddies have 

. 

I f  the  demarcation wavenumber between t h e  d i r e c t  and reverse cascades 

is krev , t he  l a r g e  and small values of k r e f e r  t o  

krev and krev 9 
(75) 

respect ively.  

J 
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VIII. STATISTICAL EQUILIBRIUM AND NON-EQUILIBRIUM 

By differentiating the equation of spectral balance (61) with respect 
to k,, we obtain: 

The left hand side vanishes in a statistical equilibrium, yielding 

The constant of integration i n  the right hand side is determined by 
condition at k = bo , i.e. 

In addition, we note that 

T = 0, at k=O . 
P 

(79) 

For the inertial subrange in statistical equilibrium, we can write 
the spectral balance in the form 

by omitting the viscous dissipation 
subrange. Here f 
The statistical equilibrium requires that the two transfer functions 
find a net positive transfer to balance 

& by definition of the inertia 
5 

is a sink in the enstrophy transfer across the spectrum. 
5 

. < 
On the other hand, if the net transfer is negative, ceases to be c 

a useful parameter, and the hypothesis of the statistical equilibrium 
becomes invalid. Consequently, we have to return to the original equation 
(61) for the spectral balance in non-equilibrium: 

by assuming a supply to the spectrum from an non-stationary source of larger scale. 

x 

L 
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Here we have again omitted the  molecular d iss ipa t ion .  The negative ne t  
t ransfer ,  i.e. T 0, means an amplif icat ion of t he  enstrophy i n  t i m e ,  

and forms a reverse cascade toward the  small wavenumbers in the Spectrum* 
t 

IX. SPECTRAT, DISTRIBUTIONS 

I n  the  preceding Section, we  have dis t inguished between a d i r e c t  

cascade and a reverse cascade, as characterized by a t r ans fe r  of the gradient  

type a t  l a rge  k and by a t r ans fe r  of t he  damping type a t  small k . We 

analyse the  spec t r a l  d i s t r i bu t ions  f o r  these two cascades i n  t he  following 

l i n e s .  

A. Direct Cascade 

We consider the  j o i n t  enstrophy t r ans fe r  by u and EX - f luc tua t ions  
.L. 

u 

i n  t he  spectral balance (80), and rewrite it as 

with the  use of (66a), (67), (70a) and (71). The eddy viscosity(pk') 

governs t he  t r ans fe r  under the driving force  exclusively, and the  eddy 

v i scos i ty  (KU> governs t he  t r ans fe r  without t he  dr iv ing  force. 

of t he  following two separa te  equations of spec t r a l  balance: 

An approximate so lu t ion  of (82) can be obtained by an in te rpola t ion  

k 

O k  

2(rrL3ldIc1 k t 2  F (k') - f 
5 5 

' E ,  2{%3JdL' k f 2  I 

0 

f inding the  asymptotic so lu t ion  

of (83a), with 
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<'ut}= bK 5 113 k-2 , bK= 2/C = 0.77 , 

and the  asymptotic so lu t ion  

Note t ha t ,  f o r  obtaining the  so lu t ion  (85) of the equation of 

balance (83b), the  eddy v i scos i t y  (71) has been wr i t ten  as 

= (s \ Jyktl 2 7  k" G(k"), f o r  f i n i t e  k, 

R 
where (s) is the trace of t he  spec t r a l  densi ty  tensor,  i.e. 

As a white noise  i t  has t he  form 

&(ttl)) = ( s ) , independent of k", f o r  f i n i t e  k" 

(88) = 0, f o r  kt' =a) 

Also note t h a t  
dk" = 2 k" dkl' . (89)  - 

We have calculated G(k") from (73) and (74) f o r  subs t i t u t i on  i n t o  (86), t o  

find(MX')as w a s  wr i t t en  i n  (85b). The numerical coe f f i c i en t  

determined from the  equation: 

has been 
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Final ly  by subs t i t u t i ng  for(&') thus obtained, w e  have f 

as the  so lu t ion  of (83b). 

Now we  r e tu rn  t o  t he  problem of the  in te rpola t ion  of the two 

asymptotic solut ions (84a) and (85a), by incorporating the  two eddy 

v i s c o s i t i e s  (84b) and (85b) i n  t he  equation (82) of the  j o i n t  balance, 

which becomes : 

The equation (91) shows t h a t  the  dominant eddy v i s c o s i t i e s  a r e i n  the  form of 

(Eu') f o r  k < -ko, and (%I) f o r  k )  ko 

Then we  f i nd  the  following formula of interpolat lon:  

1 with 
1 

'( l+k/k 0 ) 2 1+ k/ko 

and 

0.46 {s) -1/4 

(93) 

(94) 

(95) 

It is easy t o  ve r i fy  t h a t  the  general solut-on (93) -nclude the  

asymptotic solut ions (84a) and (85a) f o r  k < ko 
It is seen t h a t  the  spec t r a l  l a w  k-3 

i n  the  sequence of increasing wavenumbers. 

and k > ko8 respect ively.  

precedes the  spec t r a l  l a w  k'4 

B. Reverse Cascade 

For the  reverse cascade which appears i n  t he  region of small wavenumbera, 
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we shall use  the  formulas (66b), (68) and (69), and write the  spec t r a l  

balance as 

o r  

by a change of notat ions from (65b) and (65c). Here& is t h e  rate of 

increase of 
F 

i n  non-equilibrium, and is assumed t o  be independent of 
balance which may include the  supply from the  synoptic scales. 

k i n  t he  global  

We divide both s ides  of (96b) by Ruo and d i f f e r e n t i a t e ,  t o  obtain 

o r  

where 

is seen t o  be a pos i t i ve  and dimensionless number in  t h i s  subrange, 

s ince  R" is a pos i t i ve  funct ion which increases with 

by d e f i n i t i o n  (68b). W e  can estimate b t o  be of t he  order of uni ty.  
k monotonically, 

b 

Final ly  we d i f f e r e n t i a t e  (99) with respect t o  k and f ind  the 
spectrum 

where 

I 

P 
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and 

is estimated to be 

(102a) 

G=” 2, (102b) 

if we approximate 
Since the reverse cascade occurs at small k, we have taken the value 
(5442) for 13 . 

2/ /$yF>. Use of (68) and (69) has been made. 
lb II 

The solution (101) takes the following asymptotic expressions 

with 

k”3 , for k < ko 

-1/4 k-4, for k > ko, 

(103a) 

(103b) 

We note that the numerical coefficients (104) in the reverse cascade 
are smaller than their corresponding values (84a) and (85a) in the 
direct cascade. 
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X. CONCLUSION 

In the direct cascade, a critical wavenumber 
into two regions: The region at 
random force, and has a power law km4 . The region at k<ko has a 
negligible effect of the random force, and yields a power law k-3 In the 
reverse cascade, the same power laws repeat at a new critical wavenumber 
ko* ( < ko) , with their numerical coefficients modified by the multiple 

ko separates the spectrum 

k > ko shows a dominant role of the 

collision , and with different parameters, A bump appears in the transition 
from the direct cascade into the inverse cascade [Weinstock,l978 . 3 
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SECTION 3 

EQUIVALENT METUODS 

FOR QUASILINEAR TURBULENT TRAJECTORIES 

J .  H .  Misguich and C .  M. Tchen* 

ABSTRACT. 

The propagator formalism is summarized in a self-consistent 
way for the asymptotic quasi-linear equation. 

A comparison is performed between the propagators and the 
Green's furictions in the case of the non-asymptotic quasi-linear 
equation. This allows to prove the equivalence of both kind of 
approximations used to describe perturbed trajectories of plasma 
turbulence. 

*This work i n v e s t i g a t e s  the d e t a i l e d  dynamics of the  perturbed 
t ra jec tory  i n  turbulence. The manuscript is prepared for publ icat ion.  
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Renormalization introduced in the microscopic 
theories of plasma and fluid turbulence essentially consists 
in taking into account the turbulent perturbation in particle 
trajectories. 

These turbulent modification (perturbed orbits) can 
of course be calculated by integrating the equations of motion 
in the fluctuating field. In a kinetic theory one uses however 
more compact and powerful 
the time-evolution of observable averages of all dynamical 
function by means of a unique entity: the propagator acting on 
phase variables x and x, or the Green function. 

tools which allow to directly describe 

- 

The aim of this work consists to prove the equivalence 
between two approximations which have been developed indepen- 
dently in these two foanalisms. This allows us to bridge the 
gap between different methods used by various authors. 

Turbulent modifications of the trajectories are 
described in the lowest approximation as quadratic function of 
the fluctuating field, and by considering all other trajectories 
as unperturbed by the turbulent field. This approximation has 
also been used in the quasi-linear equation for the distribution 
function and is thus referred to as the quasi-linear approxhation 
for the trajectories ( although it uses free trajectories as 
basic ones) . 

The turbulent trajectories so-obtained are then .used 
as a basic ingredient in the renormalized theory of plasma or 
fluid turbulence in the next approximation which is referred, to 
as the Renormalized Quasi-Linear approximation (RQLf 1,2,34,5,6,  / 
This latter appears to be equivalent to the Direct Interaction 
Approximation (DIA) introduced in fluid turbulence /4,3/ . Thus 
the renormalized propagator appearing in this approximation ( in 
the weak-coupling limit) actually describes lowest order turbulent 

trajectories ( i. e. in the quasi-linear approximation 1 and 
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we will limit ourselves to this approximation for the particle 
trajectories. 

About the methods used to describe these trajectories, 
we have to remark that one has first integratedthe equations of 
motion /l/. WEINSTOCK /2/ has then introduced in this problen math~~~t iza l  
operators'acting on the phase:wariables 2 and 

the role of which consists to describe the time-evolution of 
associated dynamical variables x(t) and v(t), and, consequently, 
(Liouville's theorem) to describe the time-evolution of distri- 
bution functions. In order to calculate the action of these 
propagators, WEINSTOCK had however to introduce particle 
trajectories which have been calculated by integrating the 
equations of motion. Some subtle effects , like that giving 
rise to an average displacement of the particles have been first 
missed by this method/3/. 

, the propagators /7/ 

Other unexpected effects, like the non-vanishing 
correlation betwesn particle velocity and Fosition, have been 
found due to the first explicit calculation of the turbulent 
propagator /8/ .  In Ref. 9 and 10 we have discussed the explicit 
relation between trajectories and the propagator for forward 
and backward propagation in time. 

Other authors have based the kinetic theory ori the 
Green functions /6/. We will compare here these methods and pro- 
ve the equivalence between the approximations used. In spite of 
the global equivalence a few differences remain, namely concerning 
non-Markovian or memoPy effects. 
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The renormalized propagator and Green's function 
which willsbe derived are described by the quasi-linear 
equation which will be deduced here in a simple way. 

For electrostatic plasma turbulence, as well as 
for Navier-Stokes fluid turbulence, the starting point can be 
put in the form of the plasma Klimontovich equation 

( in the plasma case a ratio q/m is included in the electric 
field E, , with 9 the charge and m the mass of the particle). 
In the plasma case N(x,v,t) is the Klimontovich microscopic 
distribution 

ti 

4.2 

Here 5 and 1 are the phase space variables, while gi(t) and xi(t) 
are the dynamical (time-dependent) variables described by the 
exact equations of motion. The electric field is the microscopic 
one given in term of N by the Poisson equation /11,12/. 

The ensemble average introduced in statistical 
mechanics allows one to define the usual distribution function 

-. by 
F ( ~ , y  tk) = < N Cc,ytk)) 3. 3 

and the Vlasov mean field for inhomogeneous systems by (S(X_,t)) 

Fluctuations are defined as the difference with the 
average : 

F ' = N  - ( N )  5.v 

E ' s  E - < € >  
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T h e  Klimontovich equation can be written in the compact form (at=;k 

' 3 , N  = L N  
where L = +L' 
with 

Separation in average and fluctuating equations gites 

3 . 6  

3.504 

A e-. =. &.  > 
describes the fluctuating part of the product. Let us remark 
that this last equation (x-5 1 also writes 

3.9 b. 

From the two equations ( x . 8 )  and (x.9) a general 
kinetic equation can be derived in the following way : equation 

in terms of f and the solution is 
substituted into (a.g) . A closed equation is then obtained 
for  7 , which still contains the initial fluctuation f'(b): 
this equation i s  called the general master equation. This 
equation, obtained by Weinstock from the Vlasov equation, is 
fully analoguous to the master equation obtained by Prigogine- 
Resibois in statistical mechanics, o r  to the one obtained by 
Xori or Zwanzig . 

( ~ 9 )  is solved for f '  

In order to go to a kinetic equation, irreversibility 
has to be introduced in some way : it usualiy consists to take 
the limit of long tines(t-b) compared to microscopic elementary 

x 



3-6 

times (Eulek.ian correlation. time of fluctuating fields) and to 
neglect the term involving the initial fluctuation. 

One of us has developed with BALESCU a theory which 
shows that this general kinetic.equation can be obtained in 
a rigorous way for one ("kinetic") projection of the distribution 
function, due to the existence of two independent subdynamics 
/i3,14./. Tliis theory brings justification and necessary validity 
conditions for the simple derivation which is made here. 

The basic tool for solving equations (r.94b)is the 
propagator. We will first present the simple and trivial exemple 
of the free propagator associated with unperturbed particle 
trajectories. In such a simple case, the evolution equation 
reduces to 

The solution imnediatly writes 

Here the exponential operator 

which is solution of the szme equation 

allows us to describe the time-evolution of the distribution 
function as 

J 
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It is important to remark that this same 
describes particle trajectories: 

operator also 

and this allowsoneto check the "Liouville theorem" in its simple 
form 

This is the basic advantage of the propagators: the same 
mathematical tool allows one to describe the forward propagation 
of the distribution function in time: 

g(t)..  u, Ct+t,t) x i t w  
thus 

x_It+t)= [ V , ( t t t , t ) ] - 4 ~  = U , ( L j W ~  

Detailed demonstrations have been given in the general case /16/ 

In the case of equation T.3 one can define on one 
u(b ,ko)  describing the exact motion of the hand the propagator 

particles in the fluctuating field E' - or L' : 

71t u ( t , t o )  = L I E , U  U l t j t O )  g. A o  

(u operates on both - X and V) - 
or, on the other hand, the Weinstock progagator associated with 
the homogeneous part of equation(L.g&) : 
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Here we have to stress the -fact that the fluctuation operator 3 
equally acts on L' and on A . The-solution of equations 
( IJ.~ 6)) can thus be written 

['&= A l L l b )  f ' ( t o )  + A I t  yJ L' It ') :It') E'.+c A 

The kinetic limit of long times can be justified 
by the subdynamics method /~.3,14/; it consists in neglecting 
the influence of the initial fluctuation f'/L) and in taking 
the asymptotic long time limit 3 - w .  In this case we have 

which describes the general mechanism of creation of fluctuations 
from the average function, by means of the fluctuating fields. 

U d  + u '  
we have 

Since we have 

d 
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the last term also writes as fo@a@S 

p.ns 
c ia7 

- l-al E k -  
By using the complete (but formal) solution(L.J2~) 

in 3.s we obtains the Weinstock master equation 

t o  

the kinetic limit of which gives the general kinetic equation 

5 

j 
0 1 

n c 

ip 
: 

i I ?$t] =L(t)r[t) + 6% ( L'lt) ALL,t-%> L' h l )  r(t-~) 3 E.% 

in an explicitly non-Markovian form (3@) *ends on f(t-3) 
earlier times). The second term in the r.h.s. represents the 
turbulent collision operator in its most general form. 

at 

The subdynamics method allows one to directly obtain 
the same equation in an apparently Markovian form ( including 
however all the non-Markovian effects : see h 6 / ) :  

These two forms are rigorously equivalent since the turbulent 
propagator v - is defined as the propagator of the kinetic 
equation itself: 

thus 

F.22 

E.t3 

Equation 3 . 2 2  remains a non-linear equation for the turbulent 
propagator. This dynamical non-linearity can be expressed also 
in the non-linear equation for the turbulent collision cperatcr 



- 
where v is a superooerator, non-linear in the operator G : 

This kind of operators have been studied in de 
The formal solution of (g .22)  

free propagator in the average field 

11 in Ref./l5/. 
can be written in terms of the 

in the form of the DYSON equation /18/ 

- 
where 6 is glven by E.ZY in terms of A and . The renomali- 

hich is equivalent to the Direct 
(BIA)  introduced by Kraichnan, 

P h L Y  zed quasi-linear approximati 
Interaction Approximation 
consists in approximating the Weinstock propagator A by the 
average turbulent propagator v . One obtains in this way: - 

where the RQL turbulent collision operator is defined by the 
following non-linear equation in terms of VRoL 

- 
: 

--------------- 1I.D. Kinetic equation ............................................ for turbulent "collisionless" Dlasmas ............................................................ 
Equation(%.%,2\) describes the kinFtic evolution of - 

the distribution function F = ( N )  : a priori it involves all 
collisional effects. It has however the same apparent form as 
the equation obtained usually by introducing fluctuations 

d 



3-11 

in the collisionless Vlasov equation , although such a procedure 
is not clearly justified usually. The equation obtained here is 
the actual justification of this usual procedure. Here the effect 
of individual particle collisions only appears lzter if one 
into account the specificity of the Rlimon'tovich equation : this 
appears in the binary correlations 

takes 

- 
flz = < N4($&k) N,(EL,Y,lt)) 

which involves the "self correlations" 

in addition to the usual ("distinct") correlations /19/ : 

For pratical purpose, it is sufficient to neglect self-correlations 
in order to describe the so-called "collisionless plasmas" from 
the Klimontovich equation. Correlations are then turbulent 
correlations, and the equations are identical to those obtained 
by the common procedure of the "fluctuating Vlasov equationl'but 
the justification is more clearly exhibited. 

Approximating the general kinetic equation x . 2 0  or 
3.24 consists in approximating the propagators. The quasi-linear 

approximation consists in retaining in the turbulent collisions Z.29 
only free trajectories ( in the average field) determined byr:.zG 
One obtains 

3.32 
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Le. 

5.3s 

and, in the absence of any average field ( i.e. for an homogeneous 
ensemble) it reduces to 

- I  t - t o )  y *y  
U , L t , t o )  z e 

It is important to remark in the collision term c33 
that the propgator C)'fk-Z,t) takes into account ( here in an 
approximative way) the non-Markovian feature of the general 
kinetic equation. The effect of the propagator u"(b,k-t) in the 
electric field correlation consists to introduce a Lagrangian 
correlation, here taken along a free motion ( in a renormalized 
theory: alon the average motion). 

The explicit form of the quasi-linear equation can 
be easily obtained in the absence of an average field. We then 
have 

and 

Due to the obvious non-comnutation 

a gradient term appears(beside the usual diffusicn term in 
velocity space 1 which comes from the non-Ma'rkoyian feature of 
the kinetic equation : 

d 



where 

and 

This last non-Markovian term has been shown to b e  of importance 
in presence of a strong magnetic field /19./ . Here the fluctuation 
spectrum is given by the Eulerian correlation ( assumed homogeneous 
here for simplicity) : 
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The solution of equation 2-33 is written in terms 
of the turbulent propagator co 

c 
c 

iir A 

which i s  defined by the same quasi-linear equation: 

. The formal solution is a 7) and 2~ - '3 where '3, f - 
-I! - E  

time-ordered exponential operator: 

t o  
/16/ 

where )(&is the operator of time-ordering which prescribes the 
ordering of the different factors coming from the expansion of 
the exponential, in the order of decreasing times from left to 
right. Non-commutation of the different terms in the exponent 
can be taken into account by means of an interaction representation. 
In a general way one can show /16/ that the solution 

of the equation 

9, U(t,t,) z Alt)+Bw-J U t L U  rg -5 

a, u A ( u o )  = Aitr c) , iu . )  

(where A and 3 do not commute) is given in terms of the 
(assumed elementary) propagator 

by the following formula ( see 'eq.3.10 in Ref ./16/) : 
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By choosing A:-$.! we obtain 

which can be put into the form 

The general form of the coefficients S I  ,p has been 

given in eqs (5.14-18) in Ref. /1 /. In the simple case of 
a stationnary spectrum, 2 and E c do not depend on time. If 
we neglect in the exponent tens quadratic in the spectrum $ 
( i.e. the weak coupling approximation) the result can be written 
in the following siinple and tractable form: 

L 

-FiRrmwmiF3%5-F-E- .4%---- . - .. 

d 
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The physical meaning of these various coefficients 
may be obtained in the following way. By integrating $P,g 19 

the exact equations of motion 

A ( t )  = wi 
+ (tl = E kl . I C  

up to the order Et- $ 
obtain : 

and by taking the long time limit, we 

We see that represents the turbulent contribution to the 
average displacement, the velocity, dependence of the coefficient 

represents an average acceleration or slowing down : these 
two terms are due to the velocity dependence of the diffusion 
coefficient. The 'term & represents the elementary process 
of the quasi-linear description: diffusion in velocity space . 
The term 6 represents the associated spatial diffusion ( C X ' ' ) * Z 3  

an often neglected correlation between positizn and velocity. 
This whole set of terms have been discussed for the first time in 
Ref. / 3  /. 

- 

- 
- 

iI represents the Dupree damping term) and the term 
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Inversely on can check that the propagator obtained 
in 3 . A A  allows one to recover results %.13.;tl ,coming from 
the equations of motion, by letting the obtained propagator acting 
on %=%/C) - -  a\~d x:x[k] for instance: 

O ( ( k - & , >  = V O ( t , t - B )  = x,-t!! t p ~ ~ l ~ l  
a 

9.3.0. 

The obtained propagator thus takes correctly into account 
( and allows to describe) turbulent trajectories in the quasi- 
linear, approximation , i.e. linearly in the spectrum. 

In this weak-coupling approximation and for a 
stationnary spectrum, we obtain the solution - of the quasi-linear 
equation in terms of the initial value F ( x , y , o )  as 

Let us introduce the Fourier transform by 

We thus have 

I 
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For later use, let us also introduce the Laplace 
transform 

J O  

We obtain 

In the simple case of a stationnary spectrum the 
solution OF 3.2 can be written 

and the solution q.27 can also be written formally as 

that w i l l  be compared later to the non-asymptotic case. 
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Renormalizing the quasi-linear equation essentially 
consists in taking into account the rbulent propagator in the 
collision term, instead of the free propagator. One thus have 
( see s.24 1:  

with * 

and 

'to E-. 3. 

This last equation is the RQL or D I A  approximation of the D Y S O N  

equation 9.27. . It is equivalent to approximate the Weinstock 
propagator A by the turbulent propagator V . In equation 

$ .A6  the present approximation is equivalent to keeping only 
the first term in the r.h.s.,(next term are thus responsible f o r  
"clumps" and other higher non-linear effects) . 

- 

The weak-coupling approximation of eq. q . 2  f o r  the 
propagator consists in considering in-this 5q;agion only the 
quasi-linear approximation of the collision term: 

This is the BOURRET 
It is equivalent to 

z.9 

approximation of the D Y S O N  equation /17/. 

and the solution 
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has been developed explicitly in X.10-11 , 

this The important phpical effects introduced 
renormalized approximation is the main motivation of the present 
comparison between the techniques of propagator and Green's functions. 
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The asymptotic form of the general kinetic equation 
Zt or of the quasi-linear one g.32 has been obtained either 

by the projector technique and the subdynamics method, or by the 
usual arguments: 

F'(L0) -7 0 

&I - -- P. A 

Some authors however consider the non-asymptotic equation obtained 
by simply neglecting the initial fluctuation in the general 
master equation. In spite of the fact that there do not exist, 
to the best of our knowledge, any rigorous justification of the 
consistency of such an equation, one can consider that the long 
'time limit may be taken afterwards; such an equation presents 
some advantage namely for introducing Laplace transforms. 

In the master equation p.Ag we simply take 

and limit ourselves to the quasi-linear approximation 

A(L,t() 3 U"/CIP) z. 3. 

We then obtain the non-asymptotic quasi-linear equation ( (E) =O) 

-3y .Z  - 3, QV (Wt -3 )  - 

Jo 

where the integral kernel can be written in terns of the (Eulerian) 

We assume here an homogeneous spectrum ( S is x-independent). 
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In Fourier teansform ( 3 . 2 )  ) we have 

The so-obtained equation ( V.3 1 exhibits both 
non-Markovian ( F ( k - 3 )  4 T k )  1 and non-asymptotic ( k#* ) 

features. By neglecting these two effects, the turbulent collision 
t e n  would reduce to 

where 

“4. 

gives the usual velocity-diffusion term in the homogeneous case 
( k =  0). 

Let us introduce the Laplace transform of the 
complete equation ( V8? ) : 

and let us restrict ourselves to the case of a time-independent 
spectrum. Equation V.3 then writes: 

4 



where 

and 

such that 



By writing equation / Y.rz in the form 

one can define the associated Green function by the equation 

7 ~ ~ U u ~ ~ ~ ~ ~ ? r $ ~ . ~ : . ~ ~ ~ ~ ~ - ~  * ~ ~ ~ ~ * . &  
The solution of equation 5.2 has been given by 

HORTON et al. / 5 / in an approximation which is equivalent to 
the weak-coupling renormalized approximation used in Section=, 
in the propagator formalism for the asymptotic equation. Our 
aim is to compare the approximations used in the two formalisms. 
Their solution writes [e?. 6.12 G % e F  . / S / ] ' .  

This form actually assumes an isotropic tensor 

u.8.y = H b t  

a ti This is equivalent tc neglecting the velocity dependence - =O 
as well for the dependence of H in b>-k,v as for its dependence 
in V, . 

a v  - - 
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In the framework of these approximations, we will compare in 
Section@ wiWthe asymptotic solution obtained from the 
propagator 8.26. . 

Let us introduce a Fourier transform in velocity space: 

q. 6. 

The solution V1.3 can thus be written in the considered approxi- 

by using 

d 
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One recognize here, in a scalar form, the spatial diffusion 
term -9 53 kz H 
( 9th  1 and also the crossed term o, H k corresponding 
to the correlations between position and velocity. 

(Dupree damping) , the velocity diffusion term 3 

Solution of eq. s.4 can be written 

L 
Here a propagator appears 

which is solution of 

and it generalizes to the non-asymptotic case the previous 
propagator ( for stationnary spectrum) : 
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It can be seen thag in the non-asymptotic case ( W 1 . q  ) the 
non-Markovian contributions are taken into account in a much 
simpler way as compared to the asymptotic case ( F terms in V 1 . U  ) 

This is due to the tensor m H/&k,,,v) -- : its approximate form for 

of the asymptotic case because 
b =k.V c is equivalent to-the Markovian approximation ( - =a) 

The knowledge o€ the expansion of the non- 
commuting operators in the exponent of ( VI. IS 1 : 

-&.$t &E 4k  2.i.p 
e 

- 
\I k o )  = e. e e 
y:+ 

VI .  r3 

we immediatly obtain here in the same approximation: 

V f . 2 0 .  

d 
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When compared with the expression V I . 4 1  obtained 
from the Green function, this last result has the advantage of 
taking into account the dependence of E upon both l.,k.,y 
and \r . The Fourier transform in velocity space, which 
has been introduced to integrate the Green function actually 
needed to qeglect such a dependence. Fort-this reason, one 

- 
- 

can say that the simple result obtained from 
from the non-asymptotic equation is equivalent 
mation 

the Green function 
to the approxi- 

performed in the result of the asymptotic equation if we futher 
neglect the non-Markovian contributions (i.e. Eq. q.26 where 

are given by z. 12-15 with F =0) . !! ,PIX - ,5 5 

In conclusion, we have shown that the approximation 
used by HORTON et al. to calculate the Green function V1.Y in 
the case of the non-asymptotic quasi-linear equation is 
actually the same physical weak-coupling approximation used in 
the propagator formalism. However, the use of Green's functions 
seems to be more delicate if we would like to take into account 
- the tensorial feature of H, 
- but mainly its velocity-dependence ( and thus the non- 

- 

Markovian and non-asymptotic features). 

Neglecting these two effects is equivalent to. only 
consider the asymptotic and Markovian quasi-linear equation. On the 

- the tensorial feature of ,P and in the asymptotic case 
( or of H in the non-asymptotic case) 

- their velocity dependence (i.e. average displacements effects: 
see 8.n-lS 1 and non-asymptotic contributions in the case of the 
tensor H 

otherhan3,the propagator technique allows one to take into account 

- - 
= 

c 



3-29 

Acknowledgements : 

We want to thank Dr. Wendell HORTON for the discus- 
sions we had in Aspen I which have lead us to write the present 
comparison between the equivalent but so different techniques of 
propagators and Green's functions. 



3-30 

REFERSNCSS 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

8. 
9. 

10. 

11. 

12. 

13. 
14. 
15. 

16. 
17. 
18. 
19. 

T.H. DUPREE : Phys. Fluids 9 (1966) 1773. 
J. WEINSTOCX: Phys. Fluids - 12 (1969) 1045. 
J.H. MISGUICH, R. BALESCU: J. Plasma Phys. - 13 (1975) 385. 
D.F. DUBOIS, M. ESPEDAL: Plasma Phys. - 20 (1978) 1209. 
W. HORTON, Duk-In CHOI: Phys. Rep. 49 (1979) 273. 
J.A. KROMNES, R.G. XLEVA: Phys. Fluids _. 22 (1979) 2168. 
R. BALESCU : "Equilibrium and.Non-Equilibrium Statistical 

Mechanics", Wiley (1975) . 
J.H. MISGUICH, R. BALESCU : Phys. Lett. A - 48 (1974) 426. 
J.H. MISGUICH, R. BALESCU : Plasma Phys. 19 (1977) 611. 
J.H. MISGUICH, R. BALESCU : Plasma Phys. - 21 (1979) 749. 

Yu.L. KLIMONTOVICH : "The Statistical Theory of Non-Equilibrium 
Processes in a Plasma" Pergamon (1967) 

similitude trompeuse" , Note Interne DRFC 1218 ( Oct.1981). 
J.H. MISGUICH : "Equations de Vlasov et de Klimontovich: 

J.B. MISGUICH, R. BALESCU : Physica - 79 C (1975) 373 
R. BALESCU; J.H. MISGUICH : J. Plasma Phys. 13 (1975) 53. 
J.9. MISGUICH, R. SALESCU: Bull. C1. Sci., Acadgmie Roy. 

J . H .  MISGUICH : Report EUR-CEA-FC 1020 (Nov. 1979). 
J.H. MISGUICH, R. BALESCU: Report EUR-CEA-FC 804 ( Apr.1976) 
J.H. MISGUICH, R. BALESCU : J. Plasma Phys. 19 (1978) 147. 

J.H. MISGUICH, R. BALESCU : J. of the Phys. SOC. Japan 

Belgique 61 (1975) 210. 

- 50 (1981) 1706. 

x 



SECTION 4 

A NEW KINETIC DESCRIPTION FOR TURBULENT COLLISION INCLUDING MODE-COUPLING 

J. H. MISGUICH and C. M. TCHEN 

ARSTRACT 

The micro-dynamical s t a t e  o f  f l u i d  tu rbu lence i s  descr ibed by  a 

hydrodynamical system. Th is  i s  transformed i n t o  a master equat ion i n  a 

form analogous t o  t h e  Vlasov equat ion  f o r  plasma turbulence. When the  

t o t a l  d i s t r i b u t i o n  f u n c t i o n  i s  decomposed i n t o  a mean value and a 

f l uc tua t i on ,  t h e  e v o l u t i o n  o f  t h e  mean d i s t r i b u t i o n  s a t i s f i e s  a t ranspo r t  

equat ion , c a l l e d  the  k i n e t i c  equation, and conta ins  a t u r b u l e n t  c o l l i s i o n  

t h a t  represents 

w h i l e  t h e  e v o l u t i o n  o f  t he  f l u c t u a t i o n  w i l l  form a t r a n s p o r t  equat ion for 

t h e  t u r b u l e n t  c o l l i s i o n .  Themechanism o f  t h i s  c o l l i s i o n  i s  inves t iga ted.  

The r e p o r t  compares our theory  w i t h  t h e  clump theory  o f  Dupree, t he  

r e n o r m a l i r a t i o n  theory  o f  Misguich and Balescu and the  d i r e c t  i n t e r a c t i o n  

theory  o f  Kraichnan. 

t he  s t a t i s t i c a l  e f f e c t  o f  t h e  t u r b u l e n t  f luc tua t ions ,  

The paper i s  completed by  Dr. Tchen a t  t h e  C i t y  Col lege o f  New York 

i n  c o l l a b o r a t i o n  with Dr .  Misguish a t  t he  Centre d'Etudes Nucleaires, 

Fontenay-aux-Roses, France. 
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INTRODUCTION 

In plasma and fluid turbulence, the main average 
effect of the fluctuations consists to enhance (or replace) the 
role of particle collisions and to enhance consequently the 
transport processes ( turbulent diffusion, turbulent viscosity, 
a.s.0. .... ) .  The origin of such phenomena is generally referred 
to as "turbulent collisions". 

The starting point of theoretical descriptions are 
the Navier-Stokes equation for the macroscopic description of 
fluids, and the Klimontovich equation for the microscopic 
description of plasmas. The latter reduces to the Vlasov equa- 
tion in the case of "collisionless" plasmas, which behave like 
an incompressible fluid in phase space. 

The most widely used among the theoretical descrip- 
tions of such processes are the Direct Interaction Approximation 
(DIA) introduced by Kraichnan in fluid turbulence, and the 
Renormalized Quasi-Linear (RQL) approximation introduced by 
Dupree and Weinstock in plasma turbulence. 
have been shown to be analoguous./l/ 

Both approximations 

Similar formalisms can thus be used to describe 
both kind of turbulence, and we will adopt here the language 
of plasma physics. The results can immediately be translated 
in the fluid language by replacing electric field fluctuations 
by pressure gradient fluctuations 

Turbulent collisions effects are described in RQL 
or DIA approximations by means of a Lagrangian correlation of 
fluctuating fields between two points whicb are separated in 
space and in time. These distances in space and in time are 
are actually related to each other by a complicated trajectory 
which involves all the dynamical problem; in RQL or DIA this 
trajectory reduces to an average diffusive trajectory, 

x 
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The purpose of the present work is to analyse the 
effects of higher mode coupling terms on this approximate 
description. Dupree for instance has introduced so-called 
'beta termsl'in plasma turbulence, the role of which is to 
ensure energy conservation to a higher degree of precision. 
Such terms have been proved to be important in drift wave 
turbulence /2/. 

The introduction of such higher order corrections 
has however been made in a rather intuitive manner : a simpli- 
fied approach is presented in Section 11. Here we derive new 
results for turbulent collisions by using a general kinetic 
formulation of plasma turbulence (Section 111). Moreover we 
prove that these higher order corrections already appears 
from the non-linear dynamics, even when the non-linearity 
introduced by Poisson equation is not yet taken into account: 
they cannot thus be reduced to self-consistency effects only. 

Our main result (Eq. 111.14) consists to describe 
the deviation of the turbulent collision term from its RQL 
or DIA approximation in an exact way. This deviation involves 
a generalisation of the Beta terms introduced by Dupree, which 
includes here all higher order mode-coupling terms. A new 
approximation is proposed in Eq. (111.20) which goes beyond 
the RQL description; an approximate treatment of this equation 
is left for a future work. 

Another approach is presented in Section IV, which 
uses a simple non kinetic treatment of the Vlasov equation. 
Although the resulting expression involves four main contributions 
(Eq. IV.24) , we have been able to prove that in the kinetic 
regime an unexpected cancellation occurs between the last two 
contributions, and we recover the general result of the kinetic 
formulation. 

The consequences of this cancellation are examined 
in Section V where we focus our attention on a quantity CL 
defined as the infinite time integral of the Lagrangian 
autocorrelation o f  fluctuating fields. Exactly like in the 
classical case of Brownian motion, we demonstrate here that 

J 
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fn 
geneous and stationnary turbulence. Of course, when different 
scales can be introduced to describe the fluctuations, the 
Lagrangian correlation of the small-scale fluctuations remain 
inhomogeneous and non-stationnary, and this avoids the 
corresponding Ci to vanish in the asymptotic case. In such 
a scaling description of turbulence, Ci can be used as a bare 
description of the turbulent collision : higher order mode- 
coupling terms then will introduce a dynamical shielding effect. 
This description will be developed in a subsequent work where 
an explicit calculation of the intrinsic or shielded turbulent 
collision,will be performed. 

an asymptotic description, CL goes to zero for an horno- 
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11. TURBULENT COLLISIONS AND HIGHER ORDER TERMS 

............................ If, Schematical Introduction 

The recipe for the introduction of the higher order 
Beta terms can be summarized as follows. The Rlimontovich or 
Vlasov equation for the distribution function f(x,v,t) 

11.1 
with 

3 ( 2  =-% , q is the charge and m the mass of the particles, 
-. E in plasma is the electrostatic fluctuating field) can be 
separated as usual in fluctuating and average parts: 

11.2 

11.3 

with the usual notation 
c 

F Z  < f > = R F  
and B-1-A denotes the fluctuating part of everything to its 
right. 

- 
The free propagator in the average field L is 

defined by 

11.4 

In the simple case of linear trajectories this reduces to 

11.5 9Jle (t,t*) = -X.F5_ U&, L) 
and the solution is a simple finite displacement operator in 
x-space: - ( t-b) y .E 

v, ( t h 5  = e 
11.6 
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Solution .of (11.3) can be obtained as 

II.7b 
where time dependence is taken into account by the notation # 
which denotes the time convolution. This solution is formal 
since it is an integral equation which remainsto be solved. 

Substitution of (11.7) into (11.3) is equivalent 
to an iteration and gives 

2 t ~ ~ S  LF' + L I ~  ~ B L ' v , ~  L'F + BL'V, *BL'F' 
II.3b 

A simple handwaving argument can be applied in the last term 

in the r.h.s. : in OL'F' =, ' f ' -  CL'F') the projector 
B means that the average has to be substracted from L ' f '  In 
the final calculation of average quantities the L' cannot 
be taken in average with f '  : simple averages involving this 
last L' can only be taken: 
i) either with the other L' which yields 

ii) either with other fluctuating quantities which will appear 
to the right. This case can be schematized by an arrow 

4 L' u o  SL' T')  
A 

which indicatesthat L' is operated by uo but is excluded 
from the bracket average. 
The last term in (II.3b) thus involves at least the above two 
termsf and (II.3b) can be written: 

3 ~ ' ~  L V ' + C ~ ^  + B L ~ u , + ~ ~  t (L'u&)F'+ 4 N + T >  - 7 c 11.8 

Both underlined terms can be used to define an average renorma- 
lized propagator v and the solution 'writes. - 0  
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When substituted into (11.2) this result allows us to write 

11.10 

In the r.h.s. the first term describes free motion in the 
average field, the second term a turbulent collision term 
(here in the weak-cdupbing RQL approximation). The third and 
4th terms are higher ordeE corrections to this approximation 
of the turbulent collisions. The complete expression fo r  the 
collision appears to be in this handwaving derivation: 

~ ( c ) ~  4 c F') = 4 L ' v ? ~ ~ c ~ ) ~  + (LTWS LW,+LJ): 

11.11 

Actually the last term ( equivalent to the Dupree Beta term /2/1 
is of the type 

4 L' L') < L' f') 

which involves the complete Cck) : Eq. 11.11 still remains an 
integral equation fo r  e , which describe some kind of 
renormalization or shielding of the RQL-weak coupling appro- 
ximation given by 

c O 0 4 L' V 0 * l ' ) T  

The purpose of the present work is to elucidete the role of 
such higher-order implicit terms in the equation which defines 
the turbulent collisions. 

This above schematical introduction of the higher 
order terms can be made slightly more precise by considering 
the wave-vector dependence in Fourier transform. 

J 
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For the case of a turbulence which is homogeneous 
in average, we have a space-independent average function 

and 

and 

since we have no average Vlasov field. In this case (II.3a) 
writes 

11.12 
In order to perform the iteration, we write the formal 
solution for ?%-kt 
term, the asymptotic solution writes 

I . Neglecting as usual the initial value 

11.14 J-0. 

Let us consider the structure of this general expression. In 
the last term, the first B to the left prescribes the fluctu- 
ating part 03 what follows. (The integral IAt ' '  can be replaced 
by the discrete summation 5 with appropriate factor (2n/L)3 
which are ommited here for clarity). In a homogeneous system 
this implies 

i) k"= - k, which gives L',(V) \:,[e) 

ii) k"= -4' which gives L'-k, (k') \ Llk.') 

Kw 

k #  0 . In the same way the second B implies 
4 : two values of k" appear to play a special role: - 

9 

which is analoguous to tke Dupree Beta term 

i.e. a phase coherent term. 
* - 
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Neglect ing h igher  non-coherent mode-coupling terms gives :  

1 

11.15 

Here the k' sumrnation is an  approximate form f o r  t h e  complete 
mode-coupling term BL'F' i n  I I . 3 a  o r  11 .12  : 

L e t  us  cons ider  the s t r u c t u r e  of t h i s  equat ion:  
- The term LL'k, flk,) appears  a s  a modif ica t ion  of t h e  source - - 

term i n  
t i o n  of the average func t ion  f i n t o  an " e f f e c t i v e "  average 
func t ion  : 

: it has been i n t e r p r e t e d  by Dupree as a modifica- 

- The term < L t ,  Lik,) appears  as t h e  weak-coupling approximation 
of t h e  turb l len ;  c o l l i s i o n  t e r m  ( coherent  p a r t ) .  

I n  R e f .  /3/ these both terms appear as 

1.e. a phase coherent  t e r m  CFf' ( t u r b u l e n t  c o l l i s i o n s )  and 
t h e  Beta term ( C4 1 .  T h i s  corresponds here t o  
c o l l i s i o n s  

t h e  t u r b u l e n t  

11.18 
and the  B e t a  t e r m  

The r o l e  of the  term LL, L' 
not  apparent  . F - k-g' i n  Dupree's d e s c r i p t i o n  is 

a 
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111. EXACT X INET I C RESULTS 

The appearance of turbulent collisions and higher 
order terms can actually be described more rigourously by 
using general expressions which have been obtained in the 
framework of our kinetic theory for plasma turbulence. 

II1.A. General kinetic equation for turbulent Elasmas ........................ ..................... ------ 
In the kinetic regime of long times the exact 

solution of II.3a for the fluctuations can be written /4/ 

1 111.1 
I L 

This is a basic formula which describes the fluctuations in 
terms of the average distribution function. It holds in the 
kinetic regime of times long compared to the correlation time 
of electric field fluctuations; in such regime the influence 
of the 'nitial. fluctuation has been shown to vanish exactly /4/. 
Here A is the Weinstock propagator defined by the homogeneous 
part of Eq.(II.3a) : 

I11 * 2 

111.3 

111.4 

and where )(+is the time-ordering operator /5/ which prescribes 
that in the expansion of the exponential operator in power of 
its exponent, the various operators have to be time-ordered in 
order of decreasing times when t > to . 

J 
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C(kl : d s  < L'lt) A (kit .7#) L' I t . 3 ) )  V P - G A )  
z * Ib 

Solution 111.1 can be checked immediately: by using (III.2), 
Eq. (111.1) gives (I1.3a) (see 111.4). 

This simple exact solution allows us to write 
the average equation (11.2) as 

111.5 

equation t itself: 1 

i.e. 
111.7 

111.8 

This operator allows us to write the exact solution as 

111.9 

1II.B. Iteration ---------------- 
Let us now perform a kind of iteration of Eq.(III.l). 

A simple integral relation can be obtained between the Weinstock 
propagator A (111.2) and the turbulent propagator ( 111.7) : 

. .- 

J 
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i.e. 

+ :e t ~ ~ , \ - o ) [ ~ ~ ' ~ t - s )  - GIC-Q~J A 1t-0-t) 

1II.lOb 
1. A(L,L) =V lkh- 

This integral equation can be deduced from (111.2) by 
treating (B 1'1 G 1 as a perturbation: 

By substituting (111.10) into (111.1) we immedia- 
tely obtain the following iterated formula for the fluctuating 
distribution function: 

J, ' 0  

111.11 
By substituting this exact solution in (11.2) we find a new 
expression for the turbulent collision term: 

Je 

which is given by 
111.12 

111.13 
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Introducing the variable S s t - B  we have 

[02= j? = J T B J F  =j'?JeZ 
and finally the result can be written as ( 8  + &  1 :  

111.14 

The first term is nothing else than the RQL approximation of 
the collision term, which has been developed in plasma turbulence 
in analogy with the DIA approximation in fluid turbulence/6/.This 
approximation is obtained by replacing in the exact expression 
(111.6) the fluctuating trajectories described by the Weinstock 
propagator A by the average turbulent trajectories described 
by the turbulent propagator . The second term in (111.14) 
takes into account the deviation from the RQL description, by 
means of (BL'- G )  . 
1II.C. Higher order terms beyond RQL --------_ -------_-------_-- ------- 

In order to make a bridge with the more intuitive 
calculation of Section 11, it is interesting to put this 
correction in another form. From (111.1) we have indeed: 

' 0  

111.15 
Since 

we can write (111.14) as : 
111.16 
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J O  
111.17 

When compared with 11.11 the present exact result (111.17) can 
be analyzed as follows. The first term is the RQL approximation 
of the collision term, while the first term in 11.11 only 
represents the quasi-linear result ( I\ -tue 1 . The second 
term in (111.17) is a generalization of the second term of (11.11) 
i.e. a term involving at least three fluctuating fields; here 

A remains a fluctuating quantity which may introduce corre- 
lations between four fields, a.s.0. The third term in (111.17) 
is the general form of the Beta term obtained in (11.11). The 
present general formulation avoids using approximate treatments 
of averages like that denoted 3y the arrow in Eq.(II.ll) and 
avoids elimination of higher order mode-coupling effects. 
Moreover it allows to exhibit the implicit feature of this 
higher order Beta term: the deviation of G from the RQL appro- 
ximation of G involves a Beta term which depends on G 

was given in terms of (L' F'> . 
. itself; this was already apparent in Eq. (11.11) where <L'F'> 

In summary, we have shown that the turbulent 
collision term involves a first lowest order approximation 
(QLin 11.11, RQL in 111.17) plus higher order terms which 
have been calculated. This latter correction involves an 
important , so-called Beta term, which actually depends on 
the complete collision term ( "implicit' terms 1 .  

Two levels of approximation can be used to 
describe (111.14) . 
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lo. The RQL approximation for G- is solution of the 
non-linear equation (replace A by in 111.12) : 

2'. Higher order corrections can be obtained by replacing 
I\ by 7 in the iterated formula obtained in (111.141 
In this higher approximation we have 

I 

111.20 I 
This equation is the main tractable result of the present 
work, It represents a highly non-linear equation for the 
collision term of the average equation 

described in an approximation which goes beyond the RQL 
description. The calculation of an approximate solution for 
this new closed equation i s  left for future work. 
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IV. NON-ASYMPTOTIC TREATMENT FOR TURBULENT COLLISIONS 

An integzra2.:- equation similar to (111.17) 
for the collision term of Eq.(11.2) has been obtained from 
the Vlasov equation directly /6/. We will show here that the 
physical content of the different terms appearsto be quite 
different. 

The fluctuating equation (11.3) can be written in 
the form 

' 4 L'F - 4L'F') 
IV. 1 

defined This f orm naturally introduces the exact propagator 
by 

IV. 2 
i.e. 

IV. 3 
Contrary to the Weinstock propagator, the exact propagator 

0 does not prescribe all intermadiate states to be fluctu- 
ating ones: allows l*transitionsn from an average *lstatel* to 
a fluctuating one, and vice-versa. The Weinstock propagator A 
(111.3) in turns describesthe irreducible propagation of 
fluctuating states /4/. 

Solution of (IV.1) can be written ( neglecting 
the initial fluctuation): 

i.e. 
IV.4 

a 
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t - t o  
( L ' F I )  = Ut )  f b. 4! L'lt) U [ k , b )  Li.cr-tl) fw 

- Id% ( L ' l t )  u l t , W >  e c w  t-bo 

0 IV.  6 

L e t  u s  transform E q . ( I V . 6 )  i n  order t o  introduce 
e x p l i c i t l y  a f i r s t  term which i n  t he  asymptotic l i m i t  (to 3-9,) 
gives t he  RQL approximation. For t h i s ,  w e  simply decompose 

IV.  7 - 
where the  average 
t o  t h e  average turbulent  propagator (111.8) i n  t he  limit: 

of t h e  exact propagator ac tua l ly  tends 

of time i n t e r v a l s  long compared t o  t he  co r r e l a t i on  time of 
electric f i e l d  f luc tua t ions .  Then ( I V . 6 )  becomes: 

IV. 8 
where t h e  t h ree  contr ibut ions  a r e  given by 

I 1 

In  order t o  bu i ld  a bridge between the  present  
treatment and the  asymptotic r e s u l t s  of Section 1 x 1 ,  w e  have 
t o  ca l cu l a t e  u' i n  terms of A and v For t h i s ,  w e  have 

- 
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to derive from the definitions of the propagators some simple 
exact relations in the form of integral equations. 

Let us first derive the (integral) relation 
between u and u, : 

u t  uo + U**L 'U 
IV. 12 

which is readily obtained from (IV.2) and (11.4). We have to 
note that in such relations, the two propagators in the second 
term can be equally inverted since both formulas give the same 
iterated explicit solution : 

IV. 13 

- 
Let us now express u, in terms of \I and u, . 

From (111.71 and (11.4) we have: 

IV. 14 
Combining this with (IV.12) gives 

IV. 15 
Let us also express I) in terms of A . Eq.(III.2) can be 
written: 

which gives 

A =  w - U x R L ' A  
, IV.16 

Then IV. 15 gives 

IV. 17 
Here u, in the last term can be eliminated by 'using (IV.12 
and 16) : 
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and w e  finally obtain 

The fluctuating part of U can thus be written as 

i . e .  
i 

Iv. 20a 

br, explicitly: 

From the exact relation (IV.20) we can write the  
second contribution to the collision term (IV.10) in the form: 

(L'(t)[o+U'] L ' ( t - ~ ) ) ~ ~ ~ - ~ ) = c ~  r l  t Crrz 
IV.21 

with 
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IV.23 

The total collision term (IV.8) thus writes: 

IV.24 

Actually one can prove that, in the asymptotic limit, two 
last terms in (IV.24) exactly cancel (see Appendix) : 

IV. 25 
This implies that we have asymptotically: 

IV.26 

Now this result can be proved to be identical to 
Eq.(III.14) obtained in the asymptotic description. This 
identity can be proved as follows. From (IV.9) we have indeed 

which is indeed the first term of (111.14). On the other hand, 
we have from (IV.22): 

J, Jo 
IV. 28 

which is identical to the second term of (111.141. This achieves 
the demonstration of the equivalence of (IV.26) and (111.14). 

We have thus seen in the general result (IV.24) 
that in the asymptotic limit of a distant initial condition, 
last twD terms exactly cancel. This means that in (IV.6) the 
last implicit term is cancelled asymptotically by a part of 
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1 
the contribution of u i n  the first ex icit and we 
remain with the asymptotic resu l t  given by the kinet ic  
formulation (111.14). This remains a highly non-linear equa- 
t ion for the c o l l i s i o n  term, even in  the approximation (111.20) 
where A has been replaced by . 
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V. ANALYSIS OF THE LAGRANGIAN AUTOCORRELATION OF FIELDS. 

Let us consider the exact relation (IV.6) which 
has been derived for the turbulent collision term from the 
Vlasov.or Xlimontovich equation: 

CCCL (L'F') = e& - d r  ( U t )  Ultrt-bj) C I W  
l - l 0  v. 1 

where the first term e L i s  defined in terms of the Lagrangian 
correlation between two electric field fluctuations along the 
exact motion of the particle, which is described by the 
propagator U : 

v.2 
This autocorrelation of the electric field fluctuation can 
be visualized as the correlation between two points of the 
space-time (E,t) which are defined by the exact position of 
a particle which is at point x at time t and at a point 
x (  t-3 I =U(k,h)< at time t - t  ( see Fig.1). 

- 
- 

The time integral of this autocorrelation is fully similar 
to the well-known autocorrelation of fluctuating forces which 
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appears in the classical description of Brownian motion. The 
friction coefficient of the Langevin equation 

v. 3 
is related to the diffusion coefficient by the Eintein relation 

ki- 3: - 
7- v.4 

arid is given by the time integral of the autocorrelation of 
the total fluctuating force F(t1 ( see p. 262 in /7/ ) :  

v. 5 
Xere the upper integration limit? is larger than the 
correlationhkc kof the fluctuations, but smaller than the 
relaxation time : 

& ( T  4 x r = *  
V.6 7 

The point we want to stress here is the following: the exact 
autocorrelation has a strong peak near the origine ( t s Z e )  

v.7 
(see Fig. 2 /8/) - 

3 
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which makes that the total integral ( from zero to infinity) 
of the autocorrelation is actually zero: 

dt ( F ( t ) . _ F I k + t ) >  - = 0 r v. a 
The finite integral however 

T (r) : J.' dt < f ( t L F l k i G ) )  
v. 9 

is a 5unction of C which reacksa quasi-plateau value at 
(see p. 261 in /7/) 

V.B. General result ------_-_----__-_-- 
The point we want to show here is actually very 

similar. Let us consider Eq.W.1) and calculate the second 
term. From the exact equation for u we have: 

3,u: L U  
thus 

This can also be written 

v. 10 

v. 11 

v. 12 

v. 13 
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this gives an equation where fluctuating quantities have been 
eliminated: 

V.14 

By using partial integration 

we obtain 

V. 16 

BY 

This is an integral equation for e in terms of eL which 
is given by the time integral of the Lagrangian 'autocorrelat ion 
of the fields. Here the integral operator has to be inverted 
in order to determine e in terms of e~ . An important- 
conclusion can nevertheless be reached for a particular 
homogeneous case. 

V. 18 

and 

v. 19 
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- I 

h the stationnary case v l L t t - t  J=Vbjis t-independent, and 
c [I-%) becomes time-independent . We remain with 

v.20 - JO 

For homogeneous systems, e and v are x-independent and 
( no average Vlasov field). We thus reach the 

result that for an homogeneous and stationnary turbulence 
the infinite time integral of the Lagrangian autocorrelation 
of fluctuating fields vanishes in the asymptotic description: 

1 =-%v 

1 i 

J v.21 I 
although the total turbulent collision term does not vanish. 
This result is very similar to Eq.W.8) for Brownian motion. 

This result implies that 

It is interesting to combine this result with (IV.25) : 

When reported in Eq.(IV.24) this gives 

v, 22 

V.23 

V, 24 
This means that in the asymptotic Analysis of the four terms 
appearing in (IV.8) for the collision term : 

I 



4-27 

1') last Contribution (IV.ll) goes to the complete result: 
(c 

3'),The total collision term is given by the result of the 
kinetic method developed in Section 111 : 

V. 27 
i.e. : i 

These equation (V.25,26,28) are three independent relations. 
The importance of the last result is that it allows us to 
describe the turbulent collision term by a modification of 
the RQL approximation. The contribution of G in (V.28) 
represents the equivalent of the Dupree Beta terms, here in 
a generalform. Their importance has been proved for energy 
conservation. We will come back later to this important point. 
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Let us prove the cancellation of cm and 5, in 
the asymptotic case. We calculate (IV.11) 

and use the exact asymptotic expression for  c (111.121 : 

Let us modify the variables: 

A. 3 

A. 6 % 
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(where Psk-k' ) . Substituting ( A . 6 )  into ( A . 5 )  gives 

u'(& ,\-t'+s) : d 8 ~lt,'t.e)lBL'/1-o).Gfl.e~ u t '-5 - 
1-3'*51 

~ A . 7  
When sqbstituted into ( A . 4 )  this result allows us to express 
C$ as : ( change t' into t ) 
c 

A . 8 .  

On the other hand, cg 
by using 

given by (IV.23) can also be transformed 
2 

z-e 2 -zt 
j!B J!5 S=t.t'Jh J:l zj'slj;e 

A. 9 
and we obtain ( t ' * S  1 : 

A. 10 

By comparing with (A.8)  we have thus demontstrated the result 
(IV.25) : 

A.ll 
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SECTION 5 

SPECTRAL STRUCTURE OF TURBULENCE 
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ABSTRACT 

The hydrodynamical equations of turbulence are transformed in to  a master 

equation f o r  the veloci ty  d i s t r i b u t i o n  function. 

f o r  the  closure. 

A group-scaling is introduced 

The spectral balance f o r  the ve loc i ty  f luctuat ions  of individual  

components shows t h a t  the scaled pressure- strain cor re la t ion  and the cascadec 

t r ans fe r  are two transport  functions tha t  play the most important ro les .  

derive t h i s  eorrelation,.and f ind a power spectrum _klW3for the horizontal  components, 

while the,spectrum f o r  the v e r t i c a l  component drops rapidly  by going t o  the larr,e 

scales.  

We 
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In a strongly stable boundary layer, the spectral distributions of the 
-3 large scale horizontal components take the power law k 

component decays rapidly toward the small k values. This spectral hump in the 

horizontal components are investigated here. 

of closure developed by Tchen . 

, while the vertical 

We use the group-kinetic method 
1 

Instead of the customary Fourier decomposition 

of a random function, we perform a group-scaling as a coarse-graining procedure. 

We replace the hydrodynamical equations of turbulence by a master equation for 

the velocity distribution, and expoit its advantage of being homogeneous and h a v i n g  

less nonlinearity, since the turbulent velocity is now an independent 

variable. 

11. BASIC EQUATIONS OF ATMOSPHERIC TURBULENCE 

A. Microdynamical State 

The microdynamical state of atmospheric turbulence is governed by the 

equation of continuity and the hydrodynamical equations of Navier-Stokes, as 

follows: 

4 
The total function, as denoted by ( ), consists of an average quantity, as 

denoted by 

9 

N 

and a fluctuation, or a deviation from the average, as denoted by ( 1. The 
n 

7 

evolution of the velocity (A is controlled by the kinematic viscosit'y 3 and 

a 
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a f i e l d  

which is t he  sum of the  adverse pressure gradient 
A n 

divided by a constant reference densi ty f , and the  buoyancy 
0 

A 

The buoyancy is  produced by t he  var iab le  densi ty J' 

accelerat ion 8 - IE tlie temperature T a i i ~  tile tiuinidity tiavc tticir 

mean values T, Q, 

under the  grav i ta t iona l  
/l 

- -  
constant reference values To , Qo , and f luc tua t ions  

0 ,  4 , w e  can write, under t he  Boussinesq hypothesis, 

Po 

The temperature and the  humidity s a t i s f y  the  following equations of evolution: 

.I.- I 

with t he  molecular diffusivi tylf  . 
The system of equations (la), ( l b ) ,  (5a) and (5b) describes the  microdynami 

cal  state of s t r a t i f i e d  turbulence. 

B. Group-Scaling of Fluctuations 

For t he  study of the  spectral  s t ruc tu re ,  wc  w i l l  be in te res ted  i n  tltc 'I'liirliia- 

1 , whose governing equations can be obtained by applying the  

and (51, where A E( ) is the 

n/ 

t i o n s h  , 8 

f luc tua t ion  operator  A s /-A 
averaging operator.  These equations have terms proportional t o  the  mean gradipnts  

.). 

I - ?I 
t o  (1) 
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treated as constant parameters. 

temperature and the humidity into a single variable Y, called drift, such that 

For the sake of simplicity, we combine the 
A 

The constant coefficient y has the dimension of a frequency, and will always 
accompany the drift to form the buoyancy force. 

rv 

The differential equations which govern the fluctuating functions 5 and 
w N 

W can be obtained by applying the operator A to (1) and (5). These equations 

do not contain the mode-coupline,unless a Fourier transformation is made. 
- 
However, the Fourier form, like the original equations for the fluctuations, 

contain too many minute details. 

study. 

operators A and A , which compose A, in the form: 

A coarse-graining is necessary for a statistical 

For this reason, we introduce a group-scaling,.by means of the scaling 
0 N 

A" = An+ A', 

and the sequence continues by writing 
// 

A' = A ( ' ) +  A . 
Thus we have the macro-veloclty fluctuation 

o *  0 
A u = u  , - - -  

the micro-velocity fluctuation 
, A  ' 

A u = u  , 
c -  

the submacro-velocity fluctuation 

and the submicro-velocity fluctuation 
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The goups ko , k', u 'have t h e i r  cor re la t ion  t i m e s  - - 4  

ranged .in t he  decreasing order  of magnitude, indicat ing t h e i r  decreasing 

coherence. 
0 

By t he  a i d  of A , we transform (la), ( lb )  and ( 5 )  in to:  

It is not d i f f i c u l t  t o  der ive the  following transport: equations oE eqergy 

i n  t he  group form: 

with the  t ransport  functions: 
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Thus we have the production functions fo and 
by mean drift gradient y w d  , the buoyancy transport &id , the re-distrihuCion 

by wind shear V * k d  and 
L 4 d 

y:H among the components d = 1, 2, 3 ,  the cascade transfers T o  and -7-" d.( L V  ' 
0 

and the dissipations 

the repeating Roman indices does not apply to the Greek indices. 

equations have been approximated, by treating the mean gradients 

tdw and 2; . The summation rule which applies to. 

The transport 

c -  -.., 
as constant parameters and by omitting the terms 

as arising from the inhomogeneity of turbulence. 

Unlike the non-scaled form, the energy equations of the macro-group contain 

the mode-couplings by the presence of the transfer functions. 

merit in these equations of being able to determine the spectral densities 

We also see the 

which are in reality the cumulative spec.tra1 distributions. 

C. Boundary Layer 

In boundary layers, the parameters (15) are restricted to the components 
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so that the energy equations (12) and (13) become reduced into the fo l lowing  

particular form: 

1 3  z t  ( i o , ' )  = r,; +- e,* - 

The dissipation functions f ' 2 are negligible for large scale turbulence. 44 ' w  

D. Kinetic Representation 

It can be shown that the hydrodynamical equations of turbulence (la) and 

(lb) are simply the zeroth and first moments of  the master equation 

with the equivalence relation 

in the micro-dynamical state. The master equation has the advantage of being 

homogeneous, and its advective velocity does not cause a nonlinearity since V Is 

an independent variable. 

... 

Like the hydrodynamical equations, the master equation can be submt tted 

to group-scalings, so that the evolution of 

controlled by the transport property. 

j!"c'.x,v) can be shown to be 
L..- 

x 
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ca l led  d i f fu s iv i t y ,  with the  evolution operator A (t, t - T )  

property a t t a i n s  its equilibrium by a re laxa t ion  process, t h a t  i s  prescribed 

by f l ( t , t -T)  and achieved by t he  d i f fus ion  of the  t r a j ec to ry  a t  a d i f f u s i v i t y  

. I f  the  two d i f f u s i v i t i e s  and 5 a r e  s t r u c t u r a l l y  s imilar ,  a 

. This t ransport  

t // 

.., k z  T 
& 

closure i q  found. 

The ana lys i s  of the  t ransport  functions (18) w i l l  encounter many d i f f i c u l t i e s  

from t h e  hydrodynamical approach. 

c losure and the  advantages of  deal ing with a homogeneous master equation of 

lesser nonlineari ty  i n  t h e  k ine t i c  approach w i l l  provide with a more powerEul 

t oo l  €or t he  determination of the  t ransport  functions. 

It is  hoped t h a t  t he  above re laxa t iona l  

111. KINETIC FOUNDATION OF THE PRESSURE-STRAIN CORRELATION 

Upon sca l ing  t he  master equation t o  the  macro-group, we have 

with the  so lu t ion  
1 

By taking t he  moment and d i f f e r en t i a t e ,  w e  f ind 

with 

( 2 5 a )  
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and t h e  divergence-free condition: 

The ' d i f f e r en t i a t i on  by t he  operator  v 
and (25b), and we have approximated the  exact evolution operator 

approximate operator  v, ca l led  the  average propagator. Now w e  rewrite 

has yielded t he  two contr ibut ions (25a) P 
by the  - 

these two terms i n  Fourier space, ;IS follows: 
A 

Here 

is an o r b i t  function due t o  t he  unperturbed streaming, as opposed t o  the  o r b i t  

-. 
due t o  the  perturbed path ,!(-c) by turbulence. 

I 

The V- in tegra t ion  by p a r t s  gives 
115 

Note t ha t  t h e  e f f e c t  of t h e  o r b i t  function! i s  small a s  compared t o  t h a t  of 

4 . The f ac to r  has t he  r o l e  of securing the  divergence- free condition. 
V 

1. % 
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After the v- integrat ion ,  we  reduce (27) in to :  

By d e f i n i t i o n  (3a ) ,  the  pressure 
I 

has a Fourier component 

9 

so that  the  pressure- strain corre la t ion  becomes 
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H e r e 3  is a f ac to r  of Fourier t r u n c a t i o n , ' s 0  

, 9: a r e  d i f f u s i v i t y  auto- correlation of Eo - fie ld  f luc tua t ions ,  and PAC 
tensors from the cross- correlations. The. t races  of t he  tensors  do not possess 

indices.  

in tegra t ions  with respect  t o  z 
the  divergence-f ree condition (26), and thar. 

is a d i f f u s i v i t y  tensor from t lw  
,eh 0 

?* 

The d i f f u s i v i t i e s  can play t he  r o l e  of i n t eg ra l  operators i n  the  

and b9 . Note t ha t  (29) and (33) s a t i s f y  
* 

is a boundary layer  turbulence with t he  parameters (17) .  It leaves us t he  

cor re la t ion  (33b). Here t he  reduction of the  d i f f u s i v i t y  qb i n t o  aih and Do 
b,l ,c.:.L 

by (34a ) has , t he  benef i t  of confining ourselves t o  the  ve loc i ty  f luctuat ions 

, bo, by avoiding t he  pressure- field f luctuat ions.  

The d i f f u s i v i t y  $O from the  auto- correlation has been invest igated e a r l i e r  IJV 

2 

- %  

Tchen . It is found t ha t  f o r  a s t rongly s t a b l e  boundary layer ,  i .e . ,  

0 

t he  e f f e c t  from 8' is  negl ig ib le  as compared t o  t ha t  from 7) . 
Brunt-Vais3la frequency. 

same method indicated above. 

which w i l l  be reported a t  a later opportunity, w e  expect t ha t  

Here N is the 

The la t te r  d i f f u s i v i t y  can be invest igated by the 

Without going i n t o  t he  d e t a i l s  of the  calculat ion 

a 
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The cascade t r ans fe r  function is  

from our earlier work. The eddy v i s c o s i t i e s  are k and ' . Hence the  

spec t r a l  balance (18b) becomes 

For a steady s t a t e  we d i f f e r e n t i a t e  (39) with respect  t o  k,  and obtain 

o r  

by wri t ing  I 

The spectrum is thus found t o  be 

Y 

where 

is a fac to r  without dimension. 

can be seen from the  experiments i n  Pig. 1. 

power l a w  

The existence of t he  spectrum of power law 

'i'his s p w t r i m  d i r r c ! r s  from t l w  

suggested i n  the  l i t e r a t u r e .  The two spect ra  (42) and (44') are i n  the  r a t i o  

J 



5-13 

4 f v - 3  
\’ 

I I 1 I 1 t I k  
I.-3 lo-’ IO’ 

Fig. 1. Normalized spectra Fll(k) , F22(k) in strongly 

stable turbulence. 
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for s table  boundary layer. This  small ra t io  is a l s o  veri f ied by experiments. 

For a very stable  boundary layer,  where the  conditon ( 4 5 )  is  s a t i s f i e d ,  the 

spectral  distribution 

the redistribution and the cascade transfer, so that the power law k-3 i s  again 

val id .  With the strong buoyancy, the spectrum G>O)decays rapidly by going ti:, 

(k) is  similarly dominated by the balance between 

large k , without giving the opportunity for y033(k) to act efficient\>. 
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SECTION 6 

Kinetic Equation of Turbulence 

ABSTRACT 

The d i f f e r e n t  types of  turbulence i n  appl ica t ions  t o  the  atmospheric 

and oceanic motions, the propagation of l i g h t ,  the  s o l i t a r y  waves, and the 

plasmas have d i f fe ren t  governing equations. 

common Liouvil le form. 

method can be made avai lable  t o  t r e a t  t h e  d i f f e r e n t  types of turbulence. 

We s h a l l  bring them t o  a 

In t h i s  manner, we  hope t h a t  a s ing le  s t a t i s t i c a l  

I 
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I. FLUID EQUATIONS OF TURBULENCE 

Many basic  phenomena i n  space, astrophysics, opt ics ,  atmospheric and 

oceanic sciences a r e  nonlinear and random, i .e .  they a r e  i n  a turbulent  

s t a t e .  

our a b i l i t y  t o  analyze the turbulent  behavior. 

A proper understanding of these  phenomena depends c r i t i c a l l y  on 

Although turbulence may 

appear i n  d i f f e r e n t  forms and with d i f f e r e n t  bas ic  equations f o r  the  

descr ip t ion of t h e i r  microdynamical-states, there  e x i s t s  ce r ta in  s imi la r i ty .  

To exploi t  the  analogy i n  the  attempt of finding a common form of equation 

of microdynamical state, we first consider the incompressible and homogeneous 

turbulence, and wri te  the  governing Navier-Stokes equations, as follows: 

A 
Here U & x )  is  the velocity,  p is the  @onstant density 

in the  incompressible f l u i d ,  

the  f i e l d  E.  
which can be decomposed i n t o  a mean and a f luctuat ion.  

i t y  9 ,  which is a t ranspor t  coef f i c ien t  from the  molecular d iss ipat ion,  i s  

neglig5bly small compared with i t s  turbulent  counter pa r t ,  and can be 

M L  

i s  the  pressure, whose gradient  en te r s  i n t o  

) represents the  t o t a l  motion 
n F h 

The var iable  i n  the  symbol ( 
w 

The kinematic viscos- 

omitted i n  the analys is  of  the  turbulent  t ranspor t  processes. 

g rav i ty  forms a buoyancy, and together with the  Cor io l i s  term may be included 

i n  the  E f i e l d .  

The force  of 

A 

4 

By applying the  divergence-free condition (2) t o  the  equation of momentum 
n A 

(l), we obtain the  following r e l a t i o n  between E and ct , i n  the  form 
%a .I 
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called the “equation of state”. 

The equations of motion of an inviscid 

f 01 lows : 

compressible fluid are as 

(4) 

(5) 

By differentiating (5) with respect to t and eliminating 

we obtain the relation 

* A  A 

u 

A 

‘ d  
A 

The diffusion of a scalar Y($x).with chemical reaction E is governed 
(r 

by the following equation 

4 

where 3 is the diffusion coefficient, and U is the velocity field. 

The 

turbulence driven by a random field E. 
a vorticity 

.II. 

equations (7) are valid for the two-dimensional geostrophic 
A 

The geostrophic turbulence has 
.Iv 

with =: (3/6x ,$> ) in two-dimensions. 

The equation of propagation of laser light has the form: 

1 Here is the light field propagation in the z-direction with an optical 
h 
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A 

wavenumber4 i n  a medium of  f luc tua t ing  d i e l e c t r i c  coef f i c ien t  2 . 
term --TI& I 
d i e l e c t r i c  medium, causing the self- focusing of l i gh t .  

The 

represents the  e f f e c t  of t h e  strong l i g h t  i n t e n s i t y  on the  
4 2  

192 The equation (8) is ca l l ed  the "nonlinear SchrGdinger equation" 

It  a l s o  app l ies  t o  the  s o l i t o n s  i n  plasmas, the  atmosphere and the  oceans. 

Here U is the  envelop of t h e  waves. 
A 

The l inear ized form 

2 n  2 4  2 h 2  s + V, u + k  ( € - J ) C = O ,  wfh x=-+- ' (9) 
a)c= 7" 

3,4 is ca l l ed  the  parabolic equation of propagation. 

A 
Although the  equation (9) i s  l i n e a r  in  LL,  the  product of two random 

A A  
functions E U makes the  problem s t a t i s t i c a l l y  nonlinear.  In the  form (9), 

the  propagation of l i g h t  resembles the  di f fus ion (7) of a sca la r .  

Recently a great  deal  of e f f o r t  on the  nonlinear wave phenomena has 
5 

been made by using the  Korteweg-de Vries (KdV) equation: 

where A is the coeff icent  of dispersion.  

adequately describes the  long-time asymptotic behavior of wave motions i n  

nonlinear d ispers ive  systems, and t h a t  t h i s  asymptotic form can be 

I t  has been shown t h a t  t h i s  

derived e i t h e r  from the  nonlinear Schrodinger equation (8) o r  from the  

perturbations of the  equations of wave motions. 
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-11. MASTER EOUATION FOR THE DESCRIPTION OF THE MICRODYNAMICAL STATE OFTURBULENCE 

Although the  f l u i d  turbulence obeys d i f f e r e n t  forms of  d i f f e r e n t i a l  

equations (1) - (7) f o r  the descr ip t ion of the  microdynamical state, t h e i r  

k i n e t i c  representat ion can be cast i n t o  a unified master squation, o r  

6 Klimontovich equation: 

4 

Here $ ( t x , y )  is the d i s t r i b u t i o n  of the  random var iable  - v a t  time t 
n ' -.-- 

and 'posit ion x , and L(t, X, V )  is  a d i f f e r e n t i a l  operator which takes 

varied forms depending on the  types of turbulence i n  consideration. 

These forms are found i n  the  following. 

( i )  For the  invisc id  incompressible turbulence as governed by (1) - 

(3) ,  we have the  d i f f e r e n t i a l  operator 

the equation of s t a t e  

and the source 

The  l i m i t s  of in tegrat ion a r e  understood t o  extend t o  the  whole 

avai lable  domain, unless otherwise specified.  

two representations,  i . e .  the  f l u i d  representat ion (1) - (3) on the  one 

The equivalence between the  

hand and the  k ine t i c  representat ion (11) on the  other,  can be obtained by 

writ ing 



6-6 

With t h i s  equivalence, it is  not d i f f i c u l t  t o  transform the  equation of 

s t a t e  from the  k i n e t i c  form (13) i n t o  the hydrodynamic form (3), and the  

m a s t e r  equation (11) i n t o  the  hydrodynamic system (1) and (2) by means 

of moments 

( i i )  For the  compressible turbulence, as governed by (4) - (63, we 

have t h e  same d i f f e r e n t i a l  operator (12) and the same equation of s t a t e  (13). 

The equivalence between the  two representat ions is obtained by writ ing 

t h e  d i s t r ibu t ion  as 

and the source as 

By the  equivalence r e l a t i o n  (16), it is not  d i f f i c u l  

(17b) 

sform 

t h e  k i n e t i c  representat ion with formulas (11) and (16) i n t o  the  f l u i d  

representat ion with formulas (4) - (6). 

( i i i )  For t h e  di f fus ion and t h e  two-dimensional geostrophic turbulence, 

as governed 

d i f f e r e n t i a l  operator 

by (7 ) ,  t h e  Liouvil le equation (11) remains val id ,  with a 

4 z A 

L = U . V = 3 V  , 
v -  

and an equivalence condit ion 

(iv) For the  l i g h t  propagation, we can introduce 

t o  t r a  
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and transform the  SchrGdinger equations (8) and (9) i n t o  

with 

in  nonlinear propagation, and 

i n  l‘inear propagat ion. 

Note t h a t  (21) is already i n  a form analogous t o  the  master equation 

so t h a t  f u r t h e r  transformation i n t o  the  k i n e t i c  representa t ion becomes 

unnecessary. The same argument holds f o r  the  KdV equation (10). 

(v) The plasma turbulence i s  governed by ( l l ) ,  now cal led  the Vlasov 
A 

equation, with the d i f f e r e n t i a l  operator (12). The E - f i e l d  represents 

the  e l e c t r o s t a t i c  f i e l d  with u n i t  charge and mass.The equation of s t a t e  in  

the form (13) remains val id ,  with the  source 

A(X,V) = wp2 (23) 
ubv. 

where 0 is the constant  plasma frequency. 

the normalization condit ion 

The d i s t r i b u t i o n  function has P 

where $($XI is the  number-density, - 
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In Table 1, we  have l i s t e d  the  d i f f e r e n t  types of turbulence. Their 

governing equations are wri t ten  i n  the  master 

d i f f e r e n t i a l  operators. 

d i s t r ibu t ion  function by t h e  equation of s ta te  i n  the  form (13) through 

a s o u r c e h  . 

form with appropriate 

The se l f- consis tent  f i e l d  i s  r e l a t e d  t o  the  

This reduction of several  types of turbulence i n t o  a unified 

master equation suggests t h a t  they can a l l  be t r ea ted  by a s i n g l e  

statistical method. 

The descr ip t ion of the microdynamical s t a t e  of turbulence by an equation 

of the master form presents  the  advantages tha t  the  equation is  homogeneous, 
f i  

and t h a t  the  replacement of the  veloci ty  function f.i.($x) by the  independent 
- % -  

var iable  V prevents any terms connected k i t h  the  ve loc i ty  from becoming 

nonlinear, as found i n  the  d i f f e r e n t i a l ,  operators L and the sources (a) - ( c ) .  
A * 

n 

a /  * The only surviving nonlinear term E .  a r i s e s  from the  E - f ie ld .  
* k 8  

Fortubat$ely t h i s  does not  require  our immediate a t t en t ion ,  s ince  it can be 

provisionally considered as a given random force  u n t i l  a f t e r  the  closure. 

Thereafter, E is determined by t h e  equation of s t a t e  with the  proper source. 
A 

.H 

This nonlinear term describes the  wave-particle in te ra t ion  

exp l ic i t ly ,  and therefore  w i l l  enable t h e  der ivat ion of the  nonlinear 

Landau damping i n  f l u i d s  i n  a d i r e c t  manner. 

describe such an in te rac t ion  only i n d i r e c t l y  through a s e r i e s  of moments. 

The f l u i d  representat ion may 

x 
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3. Kinetic Hierachy of Turbulence 

In the  following l i n e s  we  s h a l l  be concerned with the  incompressible 

Navier-Stakes turbulence. The microdynamical state of turbulence is 

described i n  the k i n e t i c  representat ion by the master equation 

with a d i f f e r e n t i a l  operator 

and a se l f- consis tent  f i e l d  

J 

so t h a t  the  pressure s a t i s f i e s  the  Poisson equation F 

by (13). The solut ion can be wri t ten  i n  the form: 

We ca lcu la te  

by d i f f e r e n t i a t i n g  (29), and obta in  
* 

J 
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by introducing t h e  in tegra l  operator 

The term (3 l )y ie lds  a second order nonl inear i ty  i n  the  m a s t e r  equation. 

The m a s t e r  equation, which describes the  microdynamical s t a t e  of 

turbulence, contains f luc tua t ions  with a l l  minute d e t a i l s  which a r e  

unnecessary, i f  no t  impossible, i n  a s t a t i s t i c a l  study. 

procedure is t h e  "global ensemble average" 

A coarse-graining 

with the  operator 

A d  J .  
Such an average i s  determinis t ic  and may vary with $ x  .) o r  t '-'- x v The 

deviat ion from t h i s  average is  obtained by the  operator of f luctuat ion - A = .  / - A ,  
where "1" is the  u n i t  operator . 

, r y  

By applying the  operators A , A t o  (25) ,  we obtain: 

and 

o r  

(34) 

(35) 

The operators operate on the functions which follow. 

- 
The equation (33) describes the  evolution of the  d i s t r ibu t ion  / ( t .x.y)  

i n  a turbulent  medium which presents  a turbulent  c o l l i s i o n  c ( t ~  ' "/* /) 

J 
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rY* 

representing the  statistical e f f e c t s  of the f luc tua t ions  f-4 upon r. Note 

t h a t  the  co l l i s ion ,  as defined by 

is  the  der ivat ive  of the Reynolds s t r e s s  

in  the phase space. In t h i s  sense the  equation (33) can be ca l l ed  the  

Reynolds equation i n  the  phase space, and the equation of, evolution 

of the f luctuat ion,  (34) o r  (35), i s  the Friedman equation, as obtained 

by the Reynolds decomposition 

By t h i s  decomposition, we can separate (32) i n t o  two components, as 

follows : 

where 

is the  pair d i s t r i b u t i o n  function.  Upon subs t i tu t ing  (39) i n t o  t h e  

ensemble average of (32) and subsequently i n t o  (33), we ge t  the  following 

equation of evolution of 
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with 

m e  dependance of the col l i s ion upon the p a i r  distr ibution function 

i s  expected. If w e  consider a source of the type (23), we reduce (41) t o  

the BBGKY (Bogoliubov, Born, Green, Kirkwood and Yvon) hierarchy of plasmas 

Our general form (41) applies t o  other types of turbulence too. 7-12 

# 

The equation of  evolution of f i n  (41) w i l l  be called the kinet ic  

equation of turbulence. It remains t o  determine the col l i s ion as an exp l ic i t  

function of , i .e .  i n  the form: 

- 
where ;e is a col l i s ion operator. 

x 
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16. ABSTRACT 

Two-dimensional geostrophic turbulence driven by a random force is investigated. 
Based on the Liouville equation, which simulates the primitive hydrodynamical equa- 
tions, a group-kinetic theory of turbulence is developed and the kinetic equation of 
the scaled singlet distribution is derived. This distribution will suffice for the 
investigation of the spectrum of turbulence. 
describes the pair interaction and its enhancemen The 

brium and non-equilibrium states. The propagator formalism is summarized in a self- 
consistent way for the asymptotic quasi-linear equation. Comparison is made between 
the propagators and the Green's functions in the case of the non-asymptotic quasi- 
linear equation to prove the equivalence of both kinds of approximations used to de- 
scribe perturbed trajectories of plasma turbulence. The microdynamical state of fluic 
turbulence is described by a hydrodynamical system and transformed into a master equa- 
tion analogous to the Vlasov equation for plasma turbulence. 
bution function is decomposed into a mean value and a fluctuation, the evolution of tl 
mean distribution satisfies a transport equation, .i.e., ,kinetic equation, and contains 
a turbulent collision that represents the statistical effect of the turbulent fluctua- 
tion, while the evolution of the fluctuation will form a transport equation for the 
collision. The hydrodynamical equations of turbulence are transformed into a master- 
equation for the velocity distribution function. A group-scaling is introduced for 
the closure. 
components shows that the scaled pressure-strain correlation and the cascade transfer 

The collision integral has a memory and 
by the multiple interaction. 

kinetic equation is transformed into an equation of 4 spectral balance in the equili- 
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